Premium

New NREL LCOE data highlights US potential for super-cheap solar and co-located energy storage

July 15, 2021
Facebook
Twitter
LinkedIn
Reddit
Email
A rendition of what 8minute Solar Energy’s huge Eland solar-storage will look like once complete. Image: 8minute Solar Energy.

Earlier this week the US National Renewable Energy Laboratory (NREL) published its 2021 Annual Technology Baseline (ATB) document, detailing the continued reduction in the levelised cost of electricity (LCOE) of the country’s core generators.

It highlighted that by 2030, the LCOE of utility-scale solar in the US could be as low as US$16.89/MWh, cheap enough to be the lowest-cost source of low carbon power in the country. By the end of this decade, all but the most expensive utility-scale solar PV projects in the US will be cheaper than mid-range onshore wind, a feat which could herald in a new era of solar proliferation in North America.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

NREL’s ATB provides project classes for each generation technology, ranging from ‘class 1’ (the cheapest) to ‘class 10’ (the most expensive). A mid-range ‘class 5’ is also given, indicating a median LCOE cost of each technology. The below graph charts the ‘class 5’ LCOE projections of the mainstream renewable energy generation technologies from 2021 to 2025, including options for both residential solar PV and utility-scale co-located solar and storage.

A ‘Class 5’ comparison from NREL’s ATB 2021 highlights how median average LCOEs will see solar beat onshore wind on cost by 2030. Image: PV Tech.

As the graph illustrates, the cost of solar PV is expected to fall dramatically across the board over the next decade, driven by ongoing maturation and enhancement of solar technology, economies of scale driven by larger project sizes and reduced soft costs. By the end of this decade, utility-scale solar PV looks set to beat onshore wind on price, a feat which continues out until 2050.

Cost reductions are most stark for residential solar PV, which sees its LCOE plummet nearly 60% from around US$106/MWh this year to US$43.59/MWh by 2030. By this point residential solar PV in the US would provide cheaper grid electricity than offshore wind, a considerable feat for the US considering how cheap offshore wind is expected to become in markets outside of the US.

Meanwhile, cost reductions in solar and energy storage technologies will combine to make co-located solar-storage drastically more cost competitive by 2030. It will also see its cost of generation fall at a quicker rate than other technologies over the next two decades, falling 20% between 2030 and 2050 to around US$21.88/MWh.

But taking into consideration the different classes of utility-scale solar PV illustrates the variance in LCOEs out to 2050. The graph below adds so-called ‘class 1’ and ‘class 10’ utility-scale solar PV to the above chart, portraying the range in costs and just how competitive utility-scale solar PV could be in the US by 2030 and 2050.

When adding ‘class 1’ and ‘class 10’ projections for utility-scale solar PV, the dataset indicates just how cheap solar and solar-storage could become. Image: PV Tech.

The cheapest utility-scale solar PV projects in the US will be cheaper than mid-range onshore wind projects by 2025, bringing forward that inflection point by some five years. But not only will mid-range solar projects be cheaper than onshore wind throughout the 2030s and 2040s, but the most cost-effective projects stand to be considerably cheaper than their onshore wind counterparts. Throughout the two decades from 2030 until 2050, power generated by ‘class 1’ utility-scale solar PV projects stands to be ~22% cheaper than ‘class 5’ onshore wind.

However the most expensive utility-scale solar PV projects – those in ‘class 10’ – could be beset by an increasingly cost-competitive co-located solar and storage asset class.

This year, co-located solar and storage projects are expected by NREL to have an LCOE of US$57.86/MWh, around 18% more expensive than the LCOE of even the most expensive utility-scale solar projects in the US, which are expected to have an LCOE of around US$47.14. But by 2030 the gap between the two technology classes closes considerably. By 2030 that 18% gap in LCOE closes to just 6.4%, and by 2050 the gap between the two LCOEs is just US$0.47c/MWh, equivalent to around just 2%.

Evidently, utility-scale solar PV of all but the most expensive asset classes will be cheap enough to beat every other renewable generation technology by the mid- to late-2020s, but in certain circumstances co-located solar and storage will be supremely cost effective in the US by the 2040s, indicating the potential for such projects to come forward.

The dataset used for the above analysis can be found below, while the full interactive ATB dataset can be found here.

YearOnshore windUtility PV (1)Utility PV (5)Utility PV (10)Offshore windResidential PVSolar-storage
202129.4729.3935.9847.1476.83106.8457.86
202525.8223.5528.8337.7764.578.5145.25
203021.5816.8920.6827.155.1543.5928.96
203520.4715.9619.5425.5950.6341.0827.1
204019.3715.0618.4324.1547.2838.6125.3
204518.314.1917.3722.7544.6336.1723.56
205017.2313.3516.3421.4142.4533.7621.88
LCOEs (US$/MWh) provided by NREL’s ATB 2021.
16 June 2026
Napa, USA
PV Tech has been running PV ModuleTech Conferences since 2017. PV ModuleTech USA, on 16-17 June 2026, will be our fifth PV ModulelTech conference dedicated to the U.S. utility scale solar sector. The event will gather the key stakeholders from solar developers, solar asset owners and investors, PV manufacturing, policy-making and and all interested downstream channels and third-party entities. The goal is simple: to map out the PV module supply channels to the U.S. out to 2027 and beyond.

Read Next

November 4, 2025
Syncarpha Capital has completed construction work at the 7.1MW Acton solar-plus-storage project in the US state of Massachusetts.
November 4, 2025
Israel-headquartered IPP Enlight has secured US$150 million in financing to support a solar-plus-storage project in the US.
November 4, 2025
Average renewable energy PPA deal price fell marginally to €46.37/MWh (US$53.36/MWh) in Europe in the last week of October, per Pexapark.
November 4, 2025
Acen Australia has achieved full commercial operation at its 400MW Stubbo Solar project in New South Wales, making it the first solar PV power plant backed by a Long-Term Energy Service Agreement (LTESA) to reach this milestone.
November 4, 2025
The Australia government will require energy retailers to provide free solar electricity to households during peak daytime generation periods.
November 3, 2025
US renewables developer EnergyRe has reached financial close on a solar PV portfolio in the US state of South Carolina.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany