New Product: Schmalz Wafer-Gripper SWG offers un-touched wafer handling

January 13, 2010
Facebook
Twitter
LinkedIn
Reddit
Email

Product Briefing Outline: The Schmalz Wafer-Gripper SWG is applied in fully or partially automated production of highly sensitive wafers and solar cells with maximum process stability. A new handling concept provides minimum cycle times, precise positioning, reliable handling even of deformed and broken parts, breakage detection “on the fly” and controlled air discharge.

Problem: The current technology for handling wafers and solar cells utilises conventional vacuum grippers or floating suction pads employing Bernoulli’s principle. While conventional vacuum grippers allow robust handling, chemical contamination and high mechanical strain occur at contact surfaces. Although the chemical and mechanical effects of floating suction pads are much smaller, they carry the disadvantages of a considerably lower cycle speed, relatively imprecise positioning, and uncontrolled blow-off of nuisance particles into the process room.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution: The Schmalz Wafer-Gripper SWG, grips the entire surface of the wafer without leaving a mark. Hundreds of suction holes reduce the stress impact on wafers to a minimum and avoid micro cracks. At the same time the SWG is said to meet the highest requirements with respect to acceleration and process speed. The large contact area between wafer and gripper with maximum holding force allows complex and high speed handling cycles below 1-second without slippage. The large contact surface provides reliable gripping even of deformed and broken wafers, which ensures maximum process stability. Since the pressurized air and ultra-small particles are completely extracted, production can be carried out under clean room conditions.

Applications: Wafer pickup from stacks and belts, loading of tabber/stringers, sorting, high accuracy positioning during and after the visual inspection process and other tasks.

Platform: The Wafer-Gripper is available with suction surface geometries for the standard cell sizes of 125 mm and 156 mm. The contact surface made of PEEK (Polyetheretherketone), vacuum generator, blow-off unit, robot interface, sensors and optional features are of modular design.

Availability: Currently available.

Read Next

October 31, 2025
Solar Media Market Research looks into the the Section 232 ruling in the US, tackling the questions that need to be understood.
October 31, 2025
US independent power producer (IPP) Treaty Oak Clean Energy has signed two environmental attribute purchase agreements (EAPA) with social media and data giant Meta.
October 31, 2025
US thin-film module manufacturer First Solar has unveiled plans to build a new 3.7GW manufacturing plant in the US in 2026.
October 31, 2025
Australia's solar and energy storage sectors delivered transformative performance during the third quarter of 2025, with grid-scale solar generation reaching 1,699MW average output while battery systems expanded capacity by 2,936MW since Q3 2024.
October 31, 2025
Acen Australia has committed to recycling around one million solar modules from its 400MW Stubbo solar PV power plant in New South Wales.
October 30, 2025
Scatec posted development and construction (D&C) revenues of NOK1,760 million (US$175.1 million) in the third quarter of this year.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany