NREL and Ampulse apply CVD process to create c-Si thin-film solar cells

March 8, 2012
Facebook
Twitter
LinkedIn
Reddit
Email

A trio of companies is attempting to reduce the waste caused by wafer-sawing processes by growing crystalline silicon on relatively cheap foil. NREL has teamed up with DOE's Oak Ridge National Laboratory (ORNL) and c-Si thin-film technology company Ampulse with the aim of lowering the cost of solar panels.

The teams will use a chemical vapour deposition (CVD) process to grow high-quality silicon in thin layers on a metal foil developed by ORNL. Ampulse will design a full-scale production line that will support the long rolls of metal foil necessary to ensure the technology’s cost-effectiveness and will install the line in NREL's Process Development Integration Laboratory (PDIL).

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Today’s c-Si technology manufacturing process involved huge levels of wastage, as around half of the refined silicon is lost as dust in the wafer-sawing process. Furthermore, the wafer-sawing process can render incompatible as many as 6,000 wafers from a 2m boule of silicon. Wafers cut in this way are usually close to 10 times thicker than they need to be in order to convert the maximum amount of sunlight to electricity.

The Ampulse process does not require the creation of a feedstock, but works directly with the silane to grow the desired amount of silicon directly onto the foil substrate.

“[The process] goes straight from pure silicon-containing gas to high-quality crystal silicon film,” says Brent Nelson, operational manager for the PDIL at NREL. “The advantage is you can make the wafer just as thin as you need it — 10 microns or less.”

Further information on the collaborative effort is available here.

Read Next

Premium
January 30, 2026
In an interview with PV Tech Premium, two UNSW researchers emphasise the need for enhanced UV testing for TOPCon solar cells.
January 29, 2026
Canadian renewables firm Westbridge Renewable Energy has received approval from the Alberta Utilities Commission (AUC) to build an up to 225MW solar-plus-storage plant in Alberta, Canada.
January 29, 2026
Enfinity has started commercial operations at a 33.8MW solar PV project, the first in a portfolio from which Microsoft will acquire power
January 29, 2026
The cost of Chinese solar module manufacturing will rise in the first half of 2026, though prices may fall again before the end of the year.
January 29, 2026
PV module defects are increasing as manufacturers struggle to achieve consistent quality through robust bill-of-material and process controls.
January 29, 2026
A Korean-led consortium including Hyundai Engineering has started construction at a 350MW solar PV plant in Dallas, Texas.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA