NREL and Ampulse apply CVD process to create c-Si thin-film solar cells

Facebook
Twitter
LinkedIn
Reddit
Email

A trio of companies is attempting to reduce the waste caused by wafer-sawing processes by growing crystalline silicon on relatively cheap foil. NREL has teamed up with DOE's Oak Ridge National Laboratory (ORNL) and c-Si thin-film technology company Ampulse with the aim of lowering the cost of solar panels.

The teams will use a chemical vapour deposition (CVD) process to grow high-quality silicon in thin layers on a metal foil developed by ORNL. Ampulse will design a full-scale production line that will support the long rolls of metal foil necessary to ensure the technology’s cost-effectiveness and will install the line in NREL's Process Development Integration Laboratory (PDIL).

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Today’s c-Si technology manufacturing process involved huge levels of wastage, as around half of the refined silicon is lost as dust in the wafer-sawing process. Furthermore, the wafer-sawing process can render incompatible as many as 6,000 wafers from a 2m boule of silicon. Wafers cut in this way are usually close to 10 times thicker than they need to be in order to convert the maximum amount of sunlight to electricity.

The Ampulse process does not require the creation of a feedstock, but works directly with the silane to grow the desired amount of silicon directly onto the foil substrate.

“[The process] goes straight from pure silicon-containing gas to high-quality crystal silicon film,” says Brent Nelson, operational manager for the PDIL at NREL. “The advantage is you can make the wafer just as thin as you need it — 10 microns or less.”

Further information on the collaborative effort is available here.

Read Next

October 8, 2025
US solar module prices jumped in Q3 2025 as developers scrambled to meet the 2 September 2025 safe harbour deadline for Investment Tax Credit (ITC) qualification, according to supply chain platform Anza.
October 8, 2025
Despite policy headwinds on the federal level, there is optimism for the future of the US solar and storage sector.
Premium
October 8, 2025
PV Talk: Smart Energy Council's Nigel Morris reflects on how Australia has become a global testbed for distributed solar and storage innovation.
October 8, 2025
Officials from Norway and Egypt have agreed provisional terms for the financing of the Dandara solar park in Egypt, which is being built and operated by Norwegian IPP Scatec.
October 8, 2025
University of Sydney scientists have created the largest and most efficient triple-junction perovskite-perovskite-silicon solar cell on record.
Premium
October 8, 2025
The global energy transition will only be 'marginally impacted' by uncertainties in US energy policy, according to Remi Eriksen, CEO of DNV.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK