Oak Ridge National Lab develops 3-D nanocone solar cell with high efficiency potential

May 3, 2011
Facebook
Twitter
LinkedIn
Reddit
Email

Jun Xu and his team of researchers at the Oak Ridge National Laboratory have created a 3-D nanocone-based solar cell, which is said to enhance the light-to-power conversion efficiency by almost 80%. The solar cell is constructed using n-type nanocones made from zinc oxide, which perform as the junction framework and electron conductor , and are enveloped by a p-type semiconductor consisting of polycrystalline cadmium telluride, which act as the principal photon absorber channel and hole conductor.

“To solve the entrapment problems that reduce solar cell efficiency, we created a nanocone-based solar cell, invented methods to synthesize these cells and demonstrated improved charge collection efficiency,” said Xu, a member of ORNL's chemical sciences division.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Using this technology, Xu and his team are said to have reached a light-to-power conversion efficiency of 3.2%, compared to the 1.8% efficiency of the traditional planar structure from the same materials. The researchers point to the solar materials distinctive electric field distribution, which allows for an efficient charge transport, the combination of nanocones using economical proprietary methods and the reduction of defect and voids in semiconductors as important features of the technology that allow for the enhanced conversion rate. Interestingly, the team maintains that due to the efficient charge transport, the new solar cell is said to be able to endure defective materials and therefore lessen the cost of producing next-generation solar cells.

“We designed the three-dimensional structure to provide an intrinsic electric field distribution that promotes efficient charge transport and high efficiency in converting energy from sunlight into electricity,” Xu said. “The important concept behind our invention is that the nanocone shape generates a high electric field in the vicinity of the tip junction, effectively separating, injecting and collecting minority carriers, resulting in a higher efficiency than that of a conventional planar cell made with the same materials,” Xu said.

The research papers conducted for the 3-D nanocone technology, “Efficient Charge Transport in Nanocone Tip-Film Solar Cells” and “Nanojunction solar cells based on polycrystalline CdTe films grown on ZnO nanocones”, were accepted by the Institute of Electrical and Electronics Engineers (IEEE) PV specialist conference and are set to be published in the IEEE Proceedings.

Read Next

Premium
November 7, 2025
The increasing technical complexity of the renewable energy space has increased the demands on capital raising for those in the sector.
November 7, 2025
JA Solar has signed a module supply agreement with EPC contractor Larsen & Toubro (L&T) for two utility-scale projects in Uzbekistan. 
November 7, 2025
Saatvik Green Energy, through its subsidiary Saatvik Solar Industries, secured solar PV module orders worth INR2.99 billion (US$33.7 million). 
November 7, 2025
The US Geological Survey (USGS) has released the 2025 List of Critical Minerals, which includes silicon and tellurium.
November 7, 2025
Members of the European Parliament are urging the European Commission to restrict Chinese solar inverter manufacturers’ access to the bloc’s energy infrastructure, due to cybersecurity concerns.
November 7, 2025
Renewables asset fund Alantra Solar has secured €355 million to support the development and construction of five solar PV projects in Italy.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal