Premium

Premium
March 10, 2015
The manufacturers of silicon wafer solar cells are constantly looking into cost-effective ways to increase the efficiency of their solar cells. Most of these enhancements result from incremental improvements and can be achieved by optimizing existing processes. However, it is widely recognized that in order to further improve the silicon wafer solar cell efficiency, new solar cell architectures are required. This will in turn require new manufacturing processes, which will typically involve new production equipment and consumables. New consumables can play an important role in the applicability or success of a new process step; in this paper a specific focus will be on the precursors used for the deposition of surface passivation films, such as silicon nitride and aluminium oxide.
Premium
March 10, 2015
In edition 26 of Photovoltaics International the rebirth of PV manufacturing capacity expansions in 2014 was analysed; this covered announcements on a global basis from a wide range of companies and included thin film and dedicated solar cell and module assembly lines, as well as integrated cell and module assembly lines. Because of the current level of capacity expansion announcements, a roughly quarterly analysis of such plans will be undertaken during 2015.
Premium
March 10, 2015
Ion implantation offers significant process simplification potential for the fabrication of back-junction back-contact (BJBC) solar cells. First, the number of high-temperature steps can be reduced to one when applying a co-annealing process which includes an in situ growth of a silicon oxide passivation layer. Second, the implanted regions can be patterned in situ by utilizing shadow masks. ISFH's results from evaluating both aspects are reported in this paper. With fully ion-implanted, co-annealed and laser-structured small- area cells, efficiencies of up to 23.41% (20mm x 20mm designated area) have now been achieved. It is shown that the excellent recombination behaviour of 156mm x 156mm BJBC cells patterned in situ implies a potential for realizing efficiencies greater than 23%; however, back-end issues have so far limited the efficiency to 22.1% (full-area measurement). Ion implantation can also be utilized for the doping of BJBC cells with carrier-selective junctions based on polycrystalline silicon. The current status of ISFH's work in this direction is presented.
Premium
March 10, 2015
This paper presents the main features of imec’s n-PERT (passivated emitter rear totally diffused) cells, which have achieved independently confirmed efficiencies of 22%. A special focus is given to the selective front-surface field formation by laser doping, which – combined with imec’s front-plating sequence and the excellent rear-surface passivation by Al2O3 on the boron-diffused emitters – has enabled very high voltages (close to 685mV) to be realized on large-area n-type Cz material.
Premium
March 10, 2015
This paper reports on the status of large-area, 156mm, bifacial, n-type passivated emitter and rear totally diffused (n-PERT) solar cells, which feature full-area homogeneous doped regions on the front and rear sides. The fabrication process includes either two separate gas-phase diffusion processes with sacrificial diffusion barrier layers, or a sophisticated co-diffusion approach, in which a deposited stack of borosilicate glass (BSG) and silicon oxide acts as a dopant source during back-surface field (BSF) formation in a tube furnace. Thus, the co-diffusion approach reduces the number of required high-temperature processes to one, which significantly streamlines the process sequence. It is shown that by implementing two deposition phases during the BSF diffusion process, it is possible to separately control both the depth and the surface concentration of the BSF. The use of a tailored BSG source allows low recombination and specific contact resistance values on both the front and rear sides, resulting in peak conversion efficiencies of 19.9%. A discussion on the recombination at the emitter -metal interface completes the paper, and several paths to driving the conversion efficiency towards 22% are outlined.
Premium
March 10, 2015
In the last few years PV technology has seen continuous improvements, with significant enhancements at the cell and module levels. In addition to the requirement of high efficiency, the long-term reliability of PV modules leads to proposals for innovative module concepts and designs. Meyer Burger has developed a low-temperature wire-bonding technology, known as SmartWire Connection Technology (SWCT), with the aim of offering a cost-effective solution for high-efficiency solar cells while minimizing cell-to-module losses. The introduction of this interconnection design immediately brings new challenges, especially in the selection of an appropriate encapsulant, which must ensure a good processability as well as the required long-term module reliability. The compatibility of the most cost-effective types of encapsulant currently available on the market was analysed in the study reported in this paper. Thermoplastic polyolefin encapsulants with water absorption less than 0.1% and no (or few) cross-linking additives have proved to be the best option for long-lasting PV modules in a glass-glass (GG) configuration. The development of a laminator having a symmetrical structure (two heating plates without any vacuum membrane) has also opened the door to fast lamination processes with cycle times under eight minutes.
Premium
March 10, 2015
The current standards (IEC 61646 and IEC 61730-2, and IEC 62804 draft for c-Si only) are clearly insufficient to guarantee satisfactory long-term stability and energy yield for thin-film modules, given that reports from the field, as well as from laboratory test results (beyond IEC testing), in some cases show significant degradation of IEC-certified modules. Accordingly, thin-film modules can also exhibit degradation effects, such as TCO corrosion and power degradation, because of potential-induced degradation (PID). This paper presents the results obtained for thin-film modules subjected to bias and damp-heat (BDH) conditions in both indoor and outdoor tests. In order to assess module lifetimes for different thin-film technologies with respect to PID, indoor- and outdoor-determined leakage currents are compared and analysed, taking into account weather data and results from accelerated ageing tests. Finally, on the basis of simulations and investigations for different installation locations, module lifetimes are estimated and discussed.
Premium
March 10, 2015
Sophia, a four-year European Commission-funded project to promote coordination across the EU's PV research community came to an end in January. With 20 partners drawn from industry and academia, the project appears to have fulfilled its aims of fostering greater collaboration. But with Europe's PV manufacturing industry facing a dire predicament in the face of competition from Asia, is it too little, too late?
Premium
March 1, 2015
Now that the PV industry has unquestionably entered a new growth phase, all eyes are on which technologies will win through into the mainstream of PV manufacturing. PERC, n-type, p-type bifacial, heterojunction – all have become familiar terms in the ever-growing constellation of solar cell technologies. The question is which will offer manufacturers what they are looking for in improving efficiencies and cutting costs.
Premium
February 24, 2015
PV deployment continues to grow at a remarkable rate. In just under 15 years it has gone from being a niche player, with a little over 1GW installed worldwide, to almost 140GW last year – more than a 10,000% increase. The technology’s onward march looks set to continue well into the future, albeit at a slightly more measured pace, with estimates forecasting as much as 430GW worldwide by 2018.

Upcoming Events

Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA