Premium

Premium
August 1, 2010
This paper gives an overview of the French PHOTOSIL project that deals with the purification of metallurgical-grade (MG) silicon via different stages of upgraded metallurgical-grade (UMG) silicon to finally arrive at a purity level that is compatible with the requirements of the silicon-based PV industry. However, purified UMG silicon in general and by definition does not reach the ultra-high purity levels of electronic-grade (EG) silicon. Based on the PHOTOSIL project, this paper presents the typical technical challenges and problems encountered with less pure purified UMG silicon and how they were resolved, both during silicon purification and crystallization and the processing of solar cells.
Premium
August 1, 2010
The ninth edition of Photovoltaics International was published in August 2010. It features Fraunhofer IISB looking at advanced process control techniques in Cell Processing, NREL gives an atmospheric thin-film deposition technique overview, and in Power Generation REC looks at reducing BOS costs with new technology and economies of scale.
Premium
August 1, 2010
Solar cells are generally built in a process facility, often a turnkey line, where high throughput, minimum handling, and lowest cost are dominant factors. There are many complementary metal oxide semiconductor (CMOS) lines in the semiconductor industry – probably more than the number of turnkey lines – where yield, reliability, and device size and complexity are major issues, where millions of chips are made with very close tolerance, and the cost of importance is that of the finished chip. The possibility of using or converting a CMOS line for building Si solar cells has been considered by many in the past [2]. These lines have advantages such as sophisticated and highly developed automated equipment, frequent in-process metrology and quality control, and a high degree of flexibility as well as highly advanced shop floor control systems. The major disadvantages are cost and low throughput. This paper will discuss the differences, advantages, and disadvantages of CMOS and turnkey lines and show preliminary results for Si cells made in the CMOS line.
Premium
August 1, 2010
Cell interconnection is recognized as the most critical process with respect to module production yield. If the process is not carefully controlled, cell cracking and subsequent breakage may occur. Many manufacturers promise breakage rates below 0.3-0.5% on their tabber-stringers, which applies for cells above 160-180µm thickness that are free from initial cracks. In real production, this figure strongly depends on materials, process parameters and throughput. This paper outlines some approaches that should be taken to avoid high levels of breakage in the cell interconnection process.
Premium
August 1, 2010
With the never-ending need to reduce production costs, interest in atmospheric deposition techniques is steadily increasing. Even though atmospheric deposition is not new to photovoltaics, and in some cases is actually required to get the best cell performance, many of the fabrication processes for photovoltaic cells are vacuum-based. Due to the diversity in atmospheric deposition techniques available, there are opportunities for applications in thin film and patterned deposition. This paper discusses some of the deposition techniques and their applications, benefits and drawbacks.
Premium
August 1, 2010
The upper and lower houses of the German parliament took their time finding a compromise on the degression of PV tariffs. Cutbacks were finally decided on at the start of July. The German PV market is now headed for another record-breaking year in 2010 despite or maybe even as a result of these reductions. EuPD Research, the market research institute, is making a conservative projection of approximately 5.5GW in newly-installed capacity. Nevertheless, pressure is set to increase, particularly on German solar companies. New marketing strategies have to be developed in the mid-term in order to survive and explore new segments in the long term.
Premium
May 1, 2010
Upgraded metallurgical-grade (UMG) silicon is a lower cost and lower quality form of solar-grade silicon that is capable of producing solar cells at over 16% efficiency. This paper presents some of the economic advantages and technical concerns and solutions associated with producing silicon based PV from UMG, as well as preliminary solar cell results using this material. Results are based on a comparison of cells made in a turnkey line (Schmid Group) using alloy blends of 10%, 20%, 30% and 100% UMG, mixed with solar-grade Si before ingot growth. Detailed characterization was carried out on these finished cells according to lifetime, LBIC, diffusion length and luminescence imaging to determine correlations of performance with basic parameters. Requirements for material cost and cell performance necessary for UMG solar cells to be cost competitive are also presented.
Premium
May 1, 2010
Building Information Modelling (BIM) is an approach that is fast gaining traction in the architect, engineer and construction (AEC) industries. BIM combines the construction of a virtual model with all aspects of a facility, from design (space planning) to construction (cost and scheduling), and from operations to maintenance (planning and asset management). BIM is also a process as well as a project. Even though the technology for implementation of BIM will change, and probably change rapidly, the process and underlying concepts will likely change very little. This paper outlines the guiding principles of BIM and its ability to enhance the project delivery process of the AEC industries.
Premium
May 1, 2010
Among all of the tests performed in the production chain of solar cells, each with the scope of production control and the aim of driving engineering improvements, the electrical final test is certainly the most important. The final test defines the gate to module manufacturing and has a direct impact on finances and customer satisfaction. The test procedure itself is well known and continues to undergo constant further development, but that shall not be the scope of this article. This paper will elucidate on the issues faced by bringing these tests into high volume production, highlighting some issues on measurement accuracy and degradation of the internal calibration standards. In addition to pure electrical testing, the paper will discuss the Q-Cells approach to identifying hot spots and subsequent binning of the affected cells without adding process time to the test procedure, and will show their straightforward correlation to heat generation of these hot spots in real-life condition-encapsulated module tests.
Premium
May 1, 2010
Thin-film module production has proven itself as a forerunner in the race to drive down costs for photovoltaics. The type of semiconductor material used is the most differentiating factor for thin-film photovoltaics, playing the decisive role for determining which core processes are employed and what type of equipment is used. This explains why discussions related to thin-film costs and technologies usually focus on the semiconductor type. However, the effects of glass production, processing and handling are often underestimated: factors such as scaling, yield, unit cost and total cost of ownership of the equipment are defined by the glass-production side of the industry. This paper discusses the challenges faced in glass washing and handling in thin-film PV production.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 22, 2025
Bilbao, Spain
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK