This paper describes the functionality, applicability, and the development of dependency maps which are the basis for standardized information exchange between responsible parties during the fab design process. Examples and experiences are related to the solar industry; however this generic approach may be applied to a wide range of different industry sectors with similar challenges. The aim is to provide a guideline for realizing a fab design of dynamic and complex production systems. Its main benefit is a higher degree of transparency regarding dependencies within the production system, which results in a reduction of risk for incorrect planning. In addition, it enables the factory designer to execute the fab planning process and further continuous improvements for achieving respective targets.
As polysilicon producers perform expansions and upgrades to increase production and improve operations, plant safety remains critical. Companies should routinely review their safety policies and effectively plan their projects to ensure uninterrupted product supply and create a safe environment for employees and the communities in which they operate. Both the design and the execution of expansion and upgrades to projects are critical as companies strive for minimal down time so that productivity is not affected. Such hazards and scenarios that may hinder and delay start-up, specifically in relation to polysilicon plants, are highlighted in this paper. Furthermore, the paper outlines how best to avoid these situations, offering methods of execution to achieve the three key measures of success: safety, high purity and minimal down time.
Multicrystalline wafers are the workhorse of the PV industry, with approximately 60% of crystalline silicon solar cells made from the substrate. They offer cost advantages in the form of good conversion efficiencies, which should continue to improve as cell technology advances continue. However, wafer prices were acutely impacted by the fall in PV market demand in late 2008, which continued through most of 2009. With relatively high capital costs, continued pricing pressures and calls for greater quality and control, wafer producers are now set on a course that requires rigorous and sustainable production cost-reduction strategies to meet customer requirements. This paper focuses on strategies that can be adopted to address this need for tighter quality specifications that reduce manufacturing costs downstream and boost cell conversion efficiencies.
Interconnection of inverters to the electrical grid is a key issue for the widespread integration of distributed energy resources, especially when the scenario surrounding international standards is so unclear. As a pre-normative research step, a round-robin test of two small-scale photovoltaic inverters was performed by nine DERlab laboratories during 2009. The test activity was focused on the verification of individual test procedures, common interpretation of standards and requirements, and determination of problems related to the equipment and facilities involved in conducting round-robin tests. Compilation of test results and first conclusions of this activity will be presented in this paper.
Development of fine-line crystalline silicon solar cells is a potential direction for application of high-efficiency and low-cost solar cells in the industry. Fine-line mask-free metallization offers a great potential to increase cell efficiency by reducing metal shadowing losses and surface recombination losses. At China Sunergy, three promising approaches for fine-line crystalline silicon solar cells are currently undergoing research, including processes such as laser doping selective emitter (LDSE) technology, inkjet or aerosol jet printing of metal paste and upgraded screen-printing technology. This paper presents the basic investigations of these three manufacturing technologies, singling out the technology that presents the most potential for further application.
The French Ministry for the Environment, Ecology, Sustainable Development and Sea (MEEDDM) officially published a new decree concerning photovoltaic electricity generation and feed-in tariffs (FiT) on January 12th 2010. This was followed by a second decree, published on March 16th 2010, which contained some additional information and revisions to the first. This paper outlines the effects the revisions will have on France’s solar industry and provides guidelines for future developments in the country.
Power measurements of PV reference modules can, at standard testing conditions (STC), show tolerance deviations of up to ±3%, greatly affecting the maximum power output and thereby lowering the overall energy yield of the installation. Despite some existing technical problems, there is an urgent need on the part of the photovoltaic community to achieve more accuracy in power measurements in respect to the ever-growing production volumes. Some approaches being undertaken to carry out high-quality power measurements are addressed in this paper. The deviation from an ideal simulator performance are shown and discussed for two types of simulators, with reference to the most relevant parameters: irradiance level, deviation from homogeneity, spectral mismatch and temporal stability.
Solar enterprises will each be faced with the occasional surplus or lack of solar modules in their lifetimes. In these instances, it is useful to adjust these stock levels at short notice, thus creating a spot market. Spot markets serve the short-term trade of different products, where the seller is able to permanently or temporarily offset surplus, while buyers are able to access attractive offers on surplus stocks and supplement existing supply arrangements as a last resort.
Renewable energy and, specifically, the integration of photovoltaics in residential development will play an important role in the context of global sustainability and resource conservation. Just like EPIA outlines in its Solar Europe Industry Initiative (SEII) plan (2010-2012), as distributed PV and other renewable energy technologies mature, they can provide a significant share of European electricity demand. However, as their market share grows, concerns about potential impacts on the stability and operation of the electricity grid may create barriers to their future expansion. Additionally, low-cost, high-quality integration of PV in buildings and other objects poses major development challenges. The goal of the SEII is to unlock the potential for making PV a mainstream energy source, with special attention on aspects of system integration.
On April 1st 2010, the UK government’s Department of Energy and Climate Change (DECC) officially launched its renewable energy policy. The document includes the Carbon Reduction Commitment Energy Efficiency Scheme (CRC EES), designed to improve public and private sector organizations’ energy efficiency; and the generous feed-in tariff (FiT) incentive, which pays 41.3p/kWh of solar photovoltaic energy generated. This article will look at the expectations for the UK solar photovoltaics market following the government’s policy launch. The paper will focus on the impact of the UK’s late arrival to the renewable energy market; why the FiT is so incremental for successful growth; what the expectations are for the development of the UK solar PV market as well as an investigation into whether the UK is really ready for this level of change.