SCHOTT Solar and IMEC team on crystalline cell R&D targeting 20% efficiencies and ultra-thin wafers

June 3, 2009
Facebook
Twitter
LinkedIn
Reddit
Email

In a planned three-year effort to reduce the cost of producing crystalline silicon solar cells by reducing and the amount of Si/Watt that is needed by half and boost conversion  efficiencies to approximately 20%, SCHOTT Solar has joined IMEC’s newly launched silicon photovoltaics industrial affiliation program (IIAP). The program is expected to see silicon solar cell manufacturers, equipment and material suppliers collaborate and share intellectual property, talent, risk and costs involved in the project.

“In the highly dynamic market of solar power, short time to market for new products is essential,” noted Dr. Martin Heming, Chief Executive Officer at SCHOTT Solar AG. “Therefore, SCHOTT Solar is pleased to announce that the company has joined the high-level IIAP R&D program at IMEC, the leading research institute in the field. We support IMEC’s ambitious goals and their work towards creating success their partners.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

IMEC’s program will explore both wafer-based bulk silicon solar cells and epitaxial cells. On the bulk-silicon solar cell sub-program, generic process technology will be developed that will improve the efficiency of the cell while reducing manufacturing costs.

The active silicon layer thickness will be reduced from 150µm down to 40µm. To meet efficiencies of about 20%, alternative back-side dielectric stacks and interdigitated back-side contacts (i-BC) will be introduced in thin-wafers using a PERL-style (PERL = passivated emitter and rear local back surface field) concept in an industrial process flow. Cell module integration will be investigated since reduced wafer thickness will impose specific integration requirements.

“Building on our 25 years track record in silicon solar cells and our successful experience with Industrial Affiliation Programs on CMOS scaling, we are confident that we will provide our partners a dynamic research platform for accelerated process development;” said Jef Poortmans, Program Director Solar+ at IMEC.

 

Read Next

Premium
October 24, 2025
Marcel Suri explores the datasets that will help improve the accuracy of PV output estimation and drive better performance.
October 24, 2025
US solar tracker manufacturer Nextracker and Saudi-based energy company Abunayyan Holding have formed a joint venture (JV) in Saudi Arabia.
October 24, 2025
The Saudi state-owned renewables developer Masdar has begun construction on a giant solar-plus-storage project in Abu Dhabi.
October 23, 2025
The average price of a solar PPA signed in Europe in Q3 2025 fell below €35/MWh, reaching €34.25/MWh, according to LevelTen Energy.
October 23, 2025
Infrastructure investment firm Nuveen Infrastructure has secured US$171 million in financing for a 137MW solar PV plant in South Korea.
October 23, 2025
US solar manufacturer T1 Energy sold approximately 725MW of solar modules in Q3 2025, as it continues to expand US manufacturing capabilities.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany
Solar Media Events
March 24, 2026
Lisbon, Portugal