SCHOTT Solar and IMEC team on crystalline cell R&D targeting 20% efficiencies and ultra-thin wafers

June 3, 2009
Facebook
Twitter
LinkedIn
Reddit
Email

In a planned three-year effort to reduce the cost of producing crystalline silicon solar cells by reducing and the amount of Si/Watt that is needed by half and boost conversion  efficiencies to approximately 20%, SCHOTT Solar has joined IMEC’s newly launched silicon photovoltaics industrial affiliation program (IIAP). The program is expected to see silicon solar cell manufacturers, equipment and material suppliers collaborate and share intellectual property, talent, risk and costs involved in the project.

“In the highly dynamic market of solar power, short time to market for new products is essential,” noted Dr. Martin Heming, Chief Executive Officer at SCHOTT Solar AG. “Therefore, SCHOTT Solar is pleased to announce that the company has joined the high-level IIAP R&D program at IMEC, the leading research institute in the field. We support IMEC’s ambitious goals and their work towards creating success their partners.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

IMEC’s program will explore both wafer-based bulk silicon solar cells and epitaxial cells. On the bulk-silicon solar cell sub-program, generic process technology will be developed that will improve the efficiency of the cell while reducing manufacturing costs.

The active silicon layer thickness will be reduced from 150µm down to 40µm. To meet efficiencies of about 20%, alternative back-side dielectric stacks and interdigitated back-side contacts (i-BC) will be introduced in thin-wafers using a PERL-style (PERL = passivated emitter and rear local back surface field) concept in an industrial process flow. Cell module integration will be investigated since reduced wafer thickness will impose specific integration requirements.

“Building on our 25 years track record in silicon solar cells and our successful experience with Industrial Affiliation Programs on CMOS scaling, we are confident that we will provide our partners a dynamic research platform for accelerated process development;” said Jef Poortmans, Program Director Solar+ at IMEC.

 

Read Next

October 21, 2025
Leading Chinese solar manufacturer Trinasolar has signed a module supply agreement with Malaysian renewable energy developer Mestron Energy.
Premium
October 21, 2025
PV Tech Premium spoke with academic and industry experts about the rising tide of cybersecurity concerns in Europe's solar energy sector.
October 21, 2025
Cypress Creek Renewables has achieved financial close on its 75MW Sundance solar-plus-storage project in Elbert County, Colorado.
October 21, 2025
Australia's solar-plus-storage sector gained momentum with 725MW of solar PV approvals advancing across New South Wales and Queensland.
October 21, 2025
Luminous Robotics has successfully completed its first international deployment of AI-powered solar installation robots at Engie’s 250MW Goorambat East Solar Farm in Victoria, Australia.
October 21, 2025
An independent panel has granted resource consents for the 179MW Glorit Solar Farm in Auckland, New Zealand.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany