Requires Subscription: Photovoltaics International Archive

Degradation studies of aluminiumdoped zinc oxide

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Mirjam Theelen, Thin Film Technology, TNO Solliance, Photovoltaic Materials and Devices, Delft University of Technology; Zeger Vroon, Thin Film Technology, TNO Solliance; Nicolas Barreau, Assistant Professor, Institut des Matériaux Jean Rouxel (IMN); Miro Zeman, Professor, Photovoltaic Materials and Devices, Delft University of Technology

This paper describes the degradation of sputtered aluminium-doped zinc oxide (ZnO:Al) layers which were exposed to damp heat (85°C/85% relative humidity). The ZnO:Al samples were characterized by electrical, compositional and optical measurements before, during and after damp heat exposure. Hall measurements showed that the carrier concentration stayed constant, while the mobility decreased and the overall resistivity thus increased. This mobility decrease can be explained by the enhancement of the potential barriers at the grain boundaries because of the occurrence of additional electron-trapping sites. X-ray diffraction (XRD) and optical measurements demonstrated that the crystal structure and transmission in the range 300 –1100nm did not change, thereby confirming that the bulk structure stayed constant. Depth profiling showed that the increase of the potential barriers was caused by the diffusion of H2O/OH- through the grain boundaries, leading to adsorption of these species or to the formation of Zn(OH)2 or similar species. Depth profiling also revealed the presence of carbon, chloride and sulphide in the top layer, which indicates the possible presence of Zn5(CO3)2(OH)6, Zn5(OH)8Cl2•H2O and Zn4SO4(OH)6•nH2O. Furthermore, white spots appeared on the ZnO:Al surface during damp heat exposure. The spots contained elements, such as silicon and calcium, which might have migrated from the glass and which reacted with species from the environment, including oxygen, carbon and chlorine.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy84NzE4NzdjMzc5LWRlZ3JhZGF0aW9uLXN0dWRpZXMtb2YtYWx1bWluaXVtZG9wZWQtemluYy1veGlkZS5wZGY=

Published In

Photovoltaics International Archive
This issue of Photovoltaics International, our 23rd, offers key insights into some of the technologies that are ready to move from lab to fab in support of these goals. ISC Konstanz offer a glimpse of what the low-cost, high-efficiency solar cells of the future might look like. On page 35 the institute’s authors give an overview of what they call Konstanz’ “technology zoo”, encompassing their so-called BiSoN, PELICAN and ZEBRA cell concepts, all of which are aimed at increasing energy yield at the lowest possible cost.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA