Premium

Mechanical properties of EVA-based encapsulants

May 1, 2011
Facebook
Twitter
LinkedIn
Reddit
Email

By Ulrich Eitner, Project Leader, Institute for Solar Energy Research Hamelin (ISFH); Sarah Kajari-Schröder, Scientist, PV Module Technology Group, Institute for Solar Energy Research Hamelin (ISFH)

Since the 1980s, ethylene-vinyl acetate (EVA) has been the standard encapsulation material for crystalline photovoltaic modules. From a mechanical point of view, the encapsulant takes the function of a compliant buffer layer surrounding the solar cells. Therefore, understanding its complex mechanical properties is essential for a robust module design that withstands thermal and mechanical loads. In the cured state after lamination, its stiffness features a high sensitivity to temperature especially in the glass transition region around -35°C, and a dependence on time which becomes obvious in relaxation and creep behaviour. This paper outlines the viscoelastic properties of EVA and the corresponding standard experimental methods, as well as the impact on the accuracy of wind and snow load test procedures for PV modules.

Published In

Premium
The 12th Edition was published in May 2011. Highlights from this edition include Conergy’s in-depth study of MES in PV facilities; University of Konstanz heralds the return of UMG-Si; RWTH Aachen University details the gettering options available for selective emitters; TU Delft presents an overview of breakage issues for silicon wafers and cells; and the University of Toledo outlines the benefits of RTSE in polarized light metroscopy.

Read Next

Upcoming Events

Solar Media Events
December 2, 2025
Málaga, Spain
Upcoming Webinars
December 4, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA