Requires Subscription: Photovoltaics International Archive

Reliability and durability impact of high UV transmission EVA for PV modules

Facebook
Twitter
LinkedIn
Reddit
Email

By Haidan Gong, Wuxi Suntech Power Co., Ltd., Wuxi, China; Guofeng Wang, Wuxi Suntech Power Co., Ltd., Wuxi, China

Newly developed high UV light transmission ethylene vinyl acetate (EVA) has recently been extensively introduced for use in PV modules. It has been proved that this type of EVA can result in potential power gain because of the better blue light response of the solar cell, which in turn can further reduce the cost per watt of the PV module. However, if only high UV transmission EVA is used as an encapsulant, too much UV light irradiates the backsheet, which can cause the backsheet to yellow. In order to improve the reliability and durability of the modules, SUNTECH, as a module manufacturer, therefore uses combined EVA, i.e. high UV transmission EVA as the front encapsulant and conventional UV cut-off EVA as the rear encapsulant, to protect the UV-sensitive backsheet. This paper presents the results of an investigation of the reliability and durability of high UV transmission EVA in PV modules, through an enhanced UV test which exceeds IEC standards.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8zZmZlMTgxZTU1LXJlbGlhYmlsaXR5LWFuZC1kdXJhYmlsaXR5LWltcGFjdC1vZi1oaWdoLXV2LXRyYW5zbWlzc2lvbi1ldmEtZm9yLXB2LW1vZHVsZXMucGRm

Published In

Photovoltaics International Archive
Forecasting the evolution of a young, dynamic industry is by definition an uncertain business, and solar is no exception. Rarely, if ever, do the numbers broadcast by any of the various bodies involved in the PV prediction game tally, and even historical deployment rates remain the subject of hot debate. The paradox is that getting forecasts broadly right is going to become increasingly important over the next few years, particularly for those involved in producing the equipment that will support whatever levels of demand come to pass. As discussed by Gaëtan Masson, director of the Becquerel Institute, on p.110 of this issue of Photovoltaics International, although global PV demand appears in rude health, complex political and economic conditions in many individual markets mean the question of how vigorously it will continue to grow in the coming years is less than clear. Yet for the upstream part of the industry, correctly forecasting PV market developments will be critical to ensure the right investments are made along the value chain in technologies that will help spur PV to new levels of competitiveness and thus drive continued demand.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, Thin Film
Two-terminal tandem solar cells based on perovskite/silicon (PK/ Si) technology represent one of the most exciting pathways towards pushing solar cell efficiencies beyond the thermodynamic limit of single-junction crystalline silicon devices. While laboratory efficiencies of these tandem cells have risen to very impressive levels, many important innovations towards enabling their eventual manufacturability have also been made in this rapidly evolving field. In this paper, a number of these processing innovations are highlighted in order to give a more complete view as to the viability of scaling up the processing of these devices. Specifically, the focus is placed on how today’s crystalline silicon process flows could be adapted in order to allow existing cell lines to produce PK/Si cells.
Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
This paper presents a way to evaluate production windows and related field issues using an adapted failure mode and effects analysis (FMEA) approach. Since PV modules are the most important component in terms of longevity and warranties, the focus of Fraunhofer’s work has been on module manufacturing. The process, however, can also be applied to cell manufacturing and other steps in the value chain.
Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
Low-temperature interconnection processes for high-efficiency PV cells will be a key R&D topic in the coming years. In reality, to avoid significant deterioration of the surface passivation, the metallization and interconnection processes of silicon heterojunction (SHJ) cells are limited to temperatures below 200°C; tandem cells with a perovskite subcell demand an even greater reduction in process temperature, namely below 130°C. Moreover, to ensure the sustainability of PV production on a TW scale, the use of scarce materials, especially silver, needs to be reduced, as 10% of the world’s supply was already dedicated to PV in 2020. This paper addresses the results obtained in terms of reducing the silver consumption in interconnection technology based on electrical conductive adhesive (ECA) and Pb-free ribbons.
Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
After several years of technological developments, measurement and quality standard specifications, and bifaciality implementations in energy yield simulation programs, bifacial PV has become reliable and will shortly become accepted as a valuable commodity. Since 2020, bifacial passivated emitter and rear cell (PERC) technology has been king of the energy markets, and, in combination with simple tracking systems (e.g. horizontal single-axis tracking – HSAT), the lowest electricity costs have been achieved. Because PERC is reaching its limit in terms of efficiency, and n-type technology is gaining momentum, in the future n-type PV (nPV) will replace PERC technology as the workhorse of the PV electricity market. This paper describes why, and most likely when, this will happen and which n-type technologies will be leading the pack in the race to bring electricity costs well below €0.01/kWh.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
As the PV industry rapidly advances towards annual PV production and installations on a terawatt scale, many aspects that are currently not critical will need to be considered. Among these, material availability is probably one of the most pressing ones. Established production routines will need to be changed, which may pose significant time constraints in the light of the fast-growing market. The focus of this paper will be on the use of silver for solar cell metallization. Past developments are discussed and an overview is given of the fast-growing number of relevant publications from the scientific community that deal with the problems associated with silver.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews the steps to making a breakthrough in TOPCon efficiency, from cell to PV module, by using industrially viable manufacturing processes. A detailed characterization and investigation of the primary losses of JinkoSolar’s TOPCon record cell of July 2020, with an efficiency of 24.8%, is presented.

Subscribe to Newsletter

Upcoming Events

On-Demand Webinars, Solar Media Events
October 11, 2022
Virtual event
Upcoming Webinars
October 18, 2022
10am (EDT) / 4pm (CEST)
Solar Media Events
November 29, 2022
Malaga, Spain