PVI Paper

The monoPoly technology platform: Rapid implementation of passivating contacts in PERC/T production lines

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Dr. Shubham Duttagupta; Dr. Naomi Nandakumar; Dr. John Rodriguez; Dr. Vinodh Shanmugam

Passivated emitter and rear cell (PERC) solar cell design is the industry standard for high-volume solar cell manufacturing today. The next challenge for the PV industry is to find a low-cost cell upgrade technology platform that can be easily retrofitted in existing production lines to modify the front side and enhance the rear. The monoPolyTM technology platform, developed at SERIS together with its strategic industry partners, offers an attractive solution and paves the way for the adoption of passivating contacts in large-scale manufacturing. This platform requires only one tool upgrade for most PERC/T production lines, has one less process step than a standard PERC production process, and yields a +1%abs. efficiency boost over a standard PERC process. The
authors believe that monoPoly will enable the PV industry to mass produce cells with efficiencies exceeding 24% in their existing lines in the near future.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9iMzgyM2YzMTE1LXRoZS1tb25vcG9seS10ZWNobm9sb2d5LXBsYXRmb3JtLXJhcGlkLWltcGxlbWVudGF0aW9uLW9mLXBhc3NpdmF0aW5nLWNvbnRhY3RzLWluLXBlcmMtdC1wcm9kdWN0aW9uLWxpbmVzLnBkZg==

Published In

PVI Issue
Analysis
R&D spending trends of 21 PV manufacturers

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!