Requires Subscription: Photovoltaics International Archive

The use of silicon epitaxy in advanced n-type PERT and IBC silicon solar cell designs

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By María Recamán Payo, imec, Leuven, Belgium; Izabela Kuzma-Filipek, imec, Leuven, Belgium; Filip Duerinckx, imec, Leuven, Belgium; Yuandong Li, imec, Leuven, Belgium; Emanuele Cornagliotti, imec, Leuven, Belgium; Angel Uruena, imec, Leuven, Belgium; Loic Tous, imec, Leuven, Belgium; Richard Russell, imec, Leuven, Belgium; Ali Hajjiah, Kuwait University, College of Engineering and Petroleum, Electrical Engineering Dept., Safat, Kuwait; Maarten Debucquoy, imec, Leuven, Belgium; Jozef Szlufcik, imec, Leuven, Belgium; Jozef Poortmans, imec, Leuven, Belgium; KU Leuven, Leuven, and University of Hasselt, Diepenbeek, Belgium

This paper gives an overview of the application of silicon epitaxy as a doping technology in bulk crystalline silicon solar cells. The large degree of flexibility in designing a doped profile in one process step, and the elegant way of locally creating doped regions, or simply achieving single-side doping by selective epitaxy, are presented. Other advantages – such as the absence of subsequent steps to drive in the doped region, to activate the dopants and to heal any damage or remove glassy layers – position the technology as a strong alternative to classical diffusion. Silicon epitaxy is possible on the flat and textured surfaces of solar material, and is compatible with cleaning sequences suited to industrial implementation. The integration of epitaxial layers in solar cells is capable of providing not only high efficiencies but also simplifications of the cell fabrication process, and, therefore, reductions in the cell cost of ownership (CoO). The proof of concept at the cell level has been demonstrated by the integration of boron-doped epitaxial emitters in n-type IBC and PERT solar cells: 22.8% efficiency for IBC (4cm2) and 21.9% for PERT (238.9cm2) devices have been obtained.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8wMTUxZDE0M2IwLXRoZS11c2Utb2Ytc2lsaWNvbi1lcGl0YXh5LWluLWFkdmFuY2VkLW50eXBlLXBlcnQtYW5kLWliYy1zaWxpY29uLXNvbGFyLWNlbGwtZGVzaWducy5wZGY=

Published In

Photovoltaics International Archive
In the past few issues of Photovoltaics International we have tracked in detail plans being implemented by the leading module manufacturers to expand production capacity. That process began tentatively last year as end-market demand began to catch up with the chronic overcapacity that had built up in the preceding years, prompting industry-wide upheaval. Our latest capacity expansion report (p.11), a unique resource in the industry, reveals that while that activity was maintained throughout much of 2014, spiking in a strong final quarter of 2014, announcements of new capacity slowed slightly in the opening quarter of this year. Nevertheless, all the signs point to the pace picking up again later this year as manufacturers look to take advantage of the surge in activity expected in the US at the back end of this year and into 2016, in anticipation of the cutting back of the solar investment tax credit at the end of that year.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 7, 2022
Leonardo Royal London City, London, UK
Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
June 22, 2022
Sheraton Austin Hotel at the Capitol, Austin, Texas