Tracking the tracker in gigawatt-scale

By Dr. Gofran Chowdhury, head of innovation at 3E and Giuliano Luchetta Martins, analyst at Statkraft
February 19, 2026
Facebook
Twitter
LinkedIn
Reddit
Email
A solar project under construction.
Statkraft and 3E analysed 64 utility-scale PV plants to assess tracker performance. Image: Burns & McDonnell

Solar trackers are now standard in utility-scale solar farms worldwide. The global tracker market stands at US$10.79bn in 2025, projected to be US$40bn by 2034.

In the US for example, most new large-scale projects use single-axis trackers, delivering 20–35% higher yield compared to fixed-tilt systems. Despite their widespread adoption and scale, surprisingly few large-scale studies examine tracker reliability in real-world operations.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Our research originated within the EU-funded Horizon Supernova project. While small-scale analyses exist, gigawatt-scale operators typically treat recurring tracker issues as site-specific rather than systemic. At 3E and Statkraft, with access to multi-gigawatt datasets, there are two key questions:

  • How reliable are solar trackers in practice?
  • Where do they most commonly fail?

We hope this work encourages industry stakeholders to conduct similar analyses and contribute to improved quality standards and grid stability.

Dataset and methodology

We analysed 64 utility-scale PV plants, representing 2.1GWp DC capacity, with datasets spanning six months to five years. Approximately 80% of the sites are located in Europe, primarily in temperate and Mediterranean climates.

To isolate tracker performance from broader plant-level effects, we developed a dedicated KPI: Tracker Availability, focused strictly on mechanical and control uptime.

Actual tracker angles from Supervisory Control and Data Acquisition (SCADA) systems (1–15 minute resolution) were benchmarked against reference angles modelled using PVLIB, based on as-built parameters such as pitch and ground coverage ratio. Trackers deviating by more than five degrees from the reference angle were classified as unavailable.

Only periods with plane-of-array irradiance above 0W/m² were considered. Wind stow positions and planned maintenance events were treated as available time.

We assessed availability under two operational windows:

  • All Tracking—the full daily cycle, including backtracking at dawn and dusk
  • Core Tracking—peak production hours only

Data quality constraints

Data quality emerged as a major limiting factor. 15 plants were excluded due to severe issues, including stalled signals, scaling and offset errors and mismatches between angle data and generation profiles

Even after exclusions, the dataset comprised hundreds of thousands of tracker records, sufficient to identify robust performance patterns.

Data gaps were frequent and therefore analysed under two assumptions:

  • Conservative scenario—communication gaps treated as unavailability
  • Best-case scenario—communication gaps treated as available time

Under the conservative scenario:

  • All Tracking: 66% median availability (64% average; range 22–96%)
  • Core Tracking: 83% median availability (76% average)

The 17 percentage-point gap highlights weaker performance during backtracking and early morning hours, when overnight faults often persist until manual intervention.

Missing data medians reached:

  • 11% for All Tracking
  • 5% for Core Tracking

Some plants lost up to 70% of tracker records.

Under the best-case assumption (gaps counted as available), median availability increased to:

  • 87% (All Tracking)
  • 89% (Core Tracking)

These values remain significantly below the 99% availability typically assumed in financial models.

Beyond communication gaps, structural data issues further reduced confidence. Scaling and offset errors distorted angle profiles, while as-built limits sometimes conflicted with observed motion (e.g. ±65 degrees versus documented ±60 degrees). Year-to-year shifts in tracker alignment hinted at calibration drift or wear.

String-level power data helped validate performance on clear days, but tracker angle data proved the most reliable indicator of mechanical behaviour.

Why tracker availability matters

The low levelised cost of electricity (LCOE) of solar PV is strongly linked to tracker deployment. Yet tracker performance is often overlooked in contracts, where performance ratio (PR) and inverter availability dominate.

In an environment of tightening margins, even small availability losses materially affect revenue.

Our Tracker Availability KPI isolates mechanical and control faults from optimisation adjustments. Potential improvements include:

  • Prioritising tracker angle and log monitoring
  • Automated alerts for deviations exceeding five degrees
  • Redundant communication systems
  • Machine-learning-enhanced backtracking optimisation

High-density layouts can strain communication networks, while ageing plants face increasing mechanical wear. Embedding tracker availability requirements into contracts, aligned with emerging guidance from certain organisations like the International Energy Agency (IEA), would reduce ambiguity and strengthen accountability.

Toward standardised tracker performance metrics

This work is among the first to systematically evaluate tracker availability across such a broad portfolio of PV plants.

By introducing a simple yet robust KPI methodology, the study aims to enable better communication between manufacturers, engineering, procurement and contracting companies (EPCs) and asset owners and ultimately to enhance operational transparency in the solar industry.

As the sector moves toward tighter margins and higher performance expectations, understanding and quantifying tracker performance becomes a key element in reducing uncertainty, improving energy yield, and ensuring bankable assets.

The views expressed in this article are those of the authors and do not necessarily reflect the views of 3E, Statkraft or its affiliates.

3 November 2026
Málaga, Spain
Understanding PV module supply to the European market in 2027. PV ModuleTech Europe 2026 is a two-day conference that tackles these challenges directly, with an agenda that addresses all aspects of module supplier selection; product availability, technology offerings, traceability of supply-chain, factory auditing, module testing and reliability, and company bankability.

Read Next

February 19, 2026
Israel-headquartered inverter producer SolarEdge has reported revenue of US$1.1 billion in 2025, while reducing its net loss from the previous year.
Premium
February 19, 2026
Making investment decisions based on an entire renewable energy portfolio, rather than the merits of an individual project, is now the norm.
February 18, 2026
Octopus Energy has announced an investment of 'nearly' US$1 billion into Californian clean energy, including a solar-plus-storage project.
Premium
February 18, 2026
Data collection and analysis in solar PV installations is increasingly sophisticated, particularly relating to grid interaction and weather forecasting.
February 18, 2026
'Advanced forecasting tools are already improving solar and demand predictions by over 30%,' writes Schneider Electric's Frédéric Godemel.
February 18, 2026
There is ‘no way around AI’ for solar companies or Europe’s solar industry as a whole, according to Walburga Hemetsberger, CEO of SolarPower Europe.

Upcoming Events

Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA
Solar Media Events
November 3, 2026
Málaga, Spain