Fraunhofer ISE researchers claim that silicon solar cells are nearing 20% efficiency

Facebook
Twitter
LinkedIn
Reddit
Email

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have concluded after a testing with more advanced cell structures than are currently used, that large-area silicon solar cells are closer than ever at achieving 20% efficiency ratings. The newly researched cell structures differed in the type of silicon material, the base and the type of emitter used. Solar cells with a negatively conducting base are referred to as n-type, those with a positive conducting base are p-type cells and the emitter had the same inverse polarization of the base.

“For processing the emitter layer, we used three different procedures as follows: aluminum alloying and boron diffusion for the p-emitter layer of our n-type solar cells and phosphorous diffusion for the n-emitter layer of our p-type solar cells,” says Christian Schmiga, project leader at Fraunhofer ISE.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

Not ready to commit yet?
  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

In studying the n-type silicon solar cells with an aluminum-alloyed emitter, Fraunhofer ISE researchers were able to obtain 19.3% efficiency. The research team formed the emitter by screen-printing a paste that contained aluminum, followed by a short high-temperature firing period. Further, when studying the n-type solar cell with a boron-diffused emitter whose surface had an added new layer of aluminum-oxide, the cells produced 19.6% efficiency.

When testing the p-type solar cells, the research team had a phosphorous diffused emitter and used the laser-fired contact (LFC) technology that Fraunhofer ISE developed to achieve 19.6% efficiency.

All test solar cells were process on 125 x 125mm² monocrystalline silicon wafers. The Fraunhofer ISE research team noted that there were no added adjusting or structuring steps needed, which led to a simplified, yet quicker processing procedure. Currently, 80% of the crystalline silicon solar cells that are manufactured average between 14% and 19% efficiency, but with the results the team produced, Fraunhofer ISE believes that 20% efficiency is only a small matter of time away.

Read Next

August 29, 2025
Chinese module maker JA Solar has launched DesertBlue, a PV module designed for desert and semi-arid regions. 
August 29, 2025
Independent power producer (IPP) Verano Energy has closed a US$204 financing for a 83MW/660MWh solar-plus-storage project in Chile.
August 29, 2025
The first half of 2025 has been the strongest year for UK solar energy generation on record, according to a new report think tank Ember.
August 29, 2025
US-based climate insurance provider kWh Analytics has launched a new renewable energy insurance cover for extreme weather events.
August 29, 2025
US grid interconnection agreements grew by 33% in 2024, reaching 75GW, with three-quarters signed for solar PV and battery energy storage system (BESS) projects, according to a new report from energy market analyst Wood Mackenzie.
August 29, 2025
Meridian Energy and Nova Energy have established a JV to build and operate a 400MW solar plant in Rangitaiki near Taupo in New Zealand.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines