• Print

NREL and Ampulse apply CVD process to create c-Si thin-film solar cells

A trio of companies is attempting to reduce the waste caused by wafer-sawing processes by growing crystalline silicon on relatively cheap foil. NREL has teamed up with DOE's Oak Ridge National Laboratory (ORNL) and c-Si thin-film technology company Ampulse with the aim of lowering the cost of solar panels.

The teams will use a chemical vapour deposition (CVD) process to grow high-quality silicon in thin layers on a metal foil developed by ORNL. Ampulse will design a full-scale production line that will support the long rolls of metal foil necessary to ensure the technology’s cost-effectiveness and will install the line in NREL's Process Development Integration Laboratory (PDIL).

Today’s c-Si technology manufacturing process involved huge levels of wastage, as around half of the refined silicon is lost as dust in the wafer-sawing process. Furthermore, the wafer-sawing process can render incompatible as many as 6,000 wafers from a 2m boule of silicon. Wafers cut in this way are usually close to 10 times thicker than they need to be in order to convert the maximum amount of sunlight to electricity.

The Ampulse process does not require the creation of a feedstock, but works directly with the silane to grow the desired amount of silicon directly onto the foil substrate.

"[The process] goes straight from pure silicon-containing gas to high-quality crystal silicon film," says Brent Nelson, operational manager for the PDIL at NREL. "The advantage is you can make the wafer just as thin as you need it — 10 microns or less."

Further information on the collaborative effort is available here.

PV-Tech Storage Promo

Newsletter

Preview Latest
Subscribe
We won't share your details - promise!

Publications

  • Photovoltaics International 26th Edition

    Looking back, 2014 was a year of convalescence for a PV industry still battered and bruised from a period of ferocious competition. End-market demand continued apace, with analysts towards the end of 2014 predicting the year would see between around 45 and 50GW of deployment. That has begun to feed through to the supplier end of the market, with all the main manufacturers announcing capacity expansions in 2015 and further ahead.

  • Manufacturing The Solar Future: The 2014 Production Annual

    Although the past few years have proved extremely testing for PV equipment manufacturers, falling module prices have driven solar end-market demand to previously unseen levels. That demand is now starting to be felt by manufacturers, to the extent that leading companies are starting to talk about serious capacity expansions later this year and into 2015. This means that the next 12 months will be a critical period if companies throughout the supply chain are to take full advantage of the PV industry’s next growth phase.

Partners

Acknowledgements

Solar Media