NREL validates 41% efficiency for Semprius’ tiny triple-junction cells

The US Department of Energy’s National Renewable Energy Laboratory advised that it recently validated Semprius’ triple-junction cells at greater than 41% efficiency at a concentration of 1,000 suns – said to be one of the highest efficiencies recorded at this concentration. The North Carolina company makes its cells from gallium arsenide with the lenses laying claim to concentrating the sunlight onto the small cells 1,100 times.

Most notable about the small size of the cell, is that they occupy 1/1000 of the entire solar module area, which is said to lead to an overall reduction of the module cost. Furthermore, Semprius acknowledges that by putting such large numbers of small cells together, the heat is better distributed across the cell’s structure, which can eliminate the need for thermal management equipment.
Semprius states that it grows a temporary layer on the original gallium-arsenide substrate and then grows the multi-junction solar cell structure on top of that layer.

Once the wafer is processed, the transfer printing process removes the cells from the gallium-arsenide substrate and transfers them to an interpose wafer. Semprius used its micro-transfer printing process to allow the micro-cells to be transferred from the growth substrate to a wafer. A large parallel process allows thousands of cells to be transferred at the same time, which additionally allows for the original substrate to be used repeatedly.

"We're using a completely different approach to what has been practiced," said Kanchan Ghosal, CPV applications engineering manager and the principal investigator for Semprius' PV Incubator Award. "This approach uses micro-cells and transfer printing to significantly reduce the use of materials in highly concentrated PV modules. And it provides a highly parallel method to manufacture the module, based on established microelectronics processes and equipment."

Semprius told the NREL that its low-cost approach can cut manufacturing expenses by 50%, a figure that the NREL noted Siemens acknowledged by taking a 16% stake in the company.

Newsletter

Preview Latest
Subscribe
We won't share your details - promise!

Publications

  • Photovoltaics International 23rd Edition

    This issue of Photovoltaics International, our 23rd, offers key insights into some of the technologies that are ready to move from lab to fab in support of these goals. ISC Konstanz offer a glimpse of what the low-cost, high-efficiency solar cells of the future might look like. On page 35 the institute’s authors give an overview of what they call Konstanz’ “technology zoo”, encompassing their so-called BiSoN, PELICAN and ZEBRA cell concepts, all of which are aimed at increasing energy yield at the lowest possible cost.

  • Manufacturing The Solar Future: The 2013 Production Annual

    In the ever-changing global solar markets, cost reduction and measures to increase cell efficiencies are the key tools available to PV manufacturers to create new opportunities and drive your business to the next level. Manufacturing the Solar Future 2013 is the third in the Photovoltaics International PV Production Annual series, delivering the next instalment of in-depth technical manufacturing information on PV production processes designed to help you gain the competitive edge.

Partners

Acknowledgements

Solar Media