NREL validates 41% efficiency for Semprius’ tiny triple-junction cells

Facebook
Twitter
LinkedIn
Reddit
Email

The US Department of Energy’s National Renewable Energy Laboratory advised that it recently validated Semprius’ triple-junction cells at greater than 41% efficiency at a concentration of 1,000 suns – said to be one of the highest efficiencies recorded at this concentration. The North Carolina company makes its cells from gallium arsenide with the lenses laying claim to concentrating the sunlight onto the small cells 1,100 times.

Most notable about the small size of the cell, is that they occupy 1/1000 of the entire solar module area, which is said to lead to an overall reduction of the module cost. Furthermore, Semprius acknowledges that by putting such large numbers of small cells together, the heat is better distributed across the cell’s structure, which can eliminate the need for thermal management equipment.
Semprius states that it grows a temporary layer on the original gallium-arsenide substrate and then grows the multi-junction solar cell structure on top of that layer.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Once the wafer is processed, the transfer printing process removes the cells from the gallium-arsenide substrate and transfers them to an interpose wafer. Semprius used its micro-transfer printing process to allow the micro-cells to be transferred from the growth substrate to a wafer. A large parallel process allows thousands of cells to be transferred at the same time, which additionally allows for the original substrate to be used repeatedly.

“We're using a completely different approach to what has been practiced,” said Kanchan Ghosal, CPV applications engineering manager and the principal investigator for Semprius' PV Incubator Award. “This approach uses micro-cells and transfer printing to significantly reduce the use of materials in highly concentrated PV modules. And it provides a highly parallel method to manufacture the module, based on established microelectronics processes and equipment.”

Semprius told the NREL that its low-cost approach can cut manufacturing expenses by 50%, a figure that the NREL noted Siemens acknowledged by taking a 16% stake in the company.

Read Next

July 7, 2025
The board of REC Silicon is running out of time on a buyout offer by Korean conglomerate Hanwha previously dismissed as "lowball".
Premium
July 7, 2025
Collecting project performance data and managing cybersecurity concerns is no simple task for many project managers.
July 7, 2025
ReNew has received a non-binding final acquisition offer from a consortium at US$8 per share, which is 13.2% more than their earlier offer.
July 7, 2025
Chinese energy giant China Petroleum and Chemical Corporation, also known as Sinopec, has commenced operations at a 7.5MW offshore floating PV plant in China.
July 7, 2025
GameChange Solar has announced plans to supply trackers for the 1GW second phase of the Abydos project in Egypt.
July 7, 2025
Private equity firm Ardian has completed the acquisition of French independent power producer Akuo, a transaction unveiled in March 2025.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 22, 2025
Bilbao, Spain
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK