SiOnyx’s Black Silicon process boasts 17%-plus-efficient multicrystalline-silicon PV cells

Facebook
Twitter
LinkedIn
Reddit
Email

SiOnyx has advised that its patented ultrafast laser texturing technology, Black Silicon, has reached 0.3%, absolute, efficiency growth over typical industry baseline solar cells. The company’s 156mm multicrystalline silicon cells, which are manufactured under a partnership with ISC Konstanz, is said to have attained average absolute efficiencies over 17%.

SiOnyx noted that its Black Silicon technology bolsters the efficiency in thinner wafers. Average efficiencies of 16.9% were realized for 150-micron thick multicrystalline cells that were 20% thinner than wafers in current production.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The cells were processed and tested at ISC Konstanz with a standard emitter, screen-printed metal and aluminum back surface field. Black Silicon texturing was completed by utilizing a Coherent Aethon tool with a Talisker picosecond laser.

“These results are further validation of the Black Silicon process and its ability to improve the economics of mainstream solar energy – and the technology is ready now,” commented Stephen Saylor, president and CEO of SiOnyx.  “SiOnyx's single-sided texture achieves significantly lower surface reflectance than industry-standard isotexture to improve cell performance.  We boost infrared performance, thus making SiOnyx Black Silicon a great complement to existing selective emitter technologies.”

The company further mentioned that its process results led to a definite improvement in process uniformity and cited standard deviations for cell efficiency and current being reduced by a factor of two with its Black Silicon.

Read Next

October 2, 2025
Spanish waste management company Trabede and energy firm Greening Group will build a solar module recycling plant in Granada, Andalusia, Spain.
October 2, 2025
The Indian solar industry has 86GW and 182GW of solar cell and module manufacturing capacity, respectively, expected to be commissioned by 2027.
October 2, 2025
The European solar sector will lose around 5% of its jobs in 2025, the first contraction in employment for the sector in nearly a decade.
October 2, 2025
PV products using perovskite technology could assume a dominant position within the next ten years, according to module producer Qcells' CTO.
October 2, 2025
The Indian Department of Commerce has launched an antidumping investigation on solar encapsulants originating or exported from South Korea, Vietnam and Thailand.
Premium
October 2, 2025
PV Talk: Qcells’ CTO Danielle Merfeld discusses the imminent opening of America’s first integrated ingot-to-module factory and her belief in solar’s long-term strengths.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines
Solar Media Events
October 7, 2025
San Francisco Bay Area, USA
Solar Media Events
October 21, 2025
New York, USA