Cyberstar uses patented ‘Gradient Freeze’ process to boost mass-yield of silicon ingots

March 14, 2011
Facebook
Twitter
LinkedIn
Reddit
Email

Cyberstar, based in Grenoble, France has introduced their new 650/800kg Crystallization Furnace System for multicrystalline silicon ingot production.  Cyberstar has been designing and manufacturing reliable and cost effective crystal growth equipments like Czochralski, Bridgman, floating zone, liquid phase epitaxy and, mirror furnaces (infrared or laser heating) since 1986.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Polysilicon and wafer production are key cost contributors to overall module manufacturing costs. Improving the mass-yield of the grown ingot reduces costs and improves product quality. However these benefits need to be provided in an environment of faster growth and reduced cycle times to maximize cost reduction goals.

Solution

Cyberstar’s patented ‘Gradient Freeze’ process technology is claimed to provide advantages that other traditional ‘casting’ systems are incapable of providing. The most significant being better mass-yield of the grown ingot, faster growth & cycle times, & a small footprint. The photovoltaic output will be at least 10MW per year, according to the company.

Applications

Multicrystalline silicon ingot production.

Platform

The 650kg furnace produces ingots comprised of 6 x 6 bricks using a GEN6 crucible or 5 x 5 bricks using a GEN5 crucible. Furnace output: > 13MW with GEN6 crucibles and > 10MW with GEN5 crucibles. Material yield: 79%. Cycle time: 50h: Dimensions (WxLxH): 2.6m x 4.5m x 4.5m; Ceiling height: 5.5m. Weight: 7000kg total system. They also have this system available in 60kg and 250kg sizes, which can be used in research & development capacities. Their 60kg multicrystalline furnace can also accept the Cyberstar Czochralski growth components, thus allowing the growth of both multi- and monocrystalline silicon – in the same furnace.  Dedicated Czochralski systems are also available. 

Availability

Cyberstar has these systems available in their new Crystal Growth Development Center at their facilities in Grenoble, France.  
 

Read Next

November 27, 2025
The Solar Stewardship Initiative (SSI) and the Copper Mark have signed an agreement to pursue “responsible production and sourcing of copper across the solar energy value chain”.
November 27, 2025
RWE Clean Energy has commissioned the 200MW Stoneridge Solar PV project in Texas, which is co-located with a 100MW/200MWh BESS.
November 27, 2025
A group of California legislators has called on the state Public Utilities Commission to hold two utilities accountable for delays in connecting solar PV and energy storage capacity to the grid.
November 27, 2025
Global investment firm Brookfield Asset Management has acquired Singapore-headquartered independent power producer (IPP) Alba Renewables.
November 27, 2025
The South Korean Ministry of Economy and Finance has unveiled a plan to invest KRW33.6 billion (US$22.9 million) in research and development (R&D) by 2026 in solar tandem cell and module technology.
November 26, 2025
Module shipment and pricing patterns in Europe bear resemblance to last year’s oversupply, which resulted in substantial losses for many industry players, writes Filip Kierzkowski

Upcoming Events

Solar Media Events
December 2, 2025
Málaga, Spain
Upcoming Webinars
December 4, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA