EV Group working with Fraunhofer ISE on next-gen solar wafer bonding

Facebook
Twitter
LinkedIn
Reddit
Email

Multi-junction solar cells with conversion efficiencies of almost 50% could become cost effective via a collaboration between equipment supplier EV Group and Fraunhofer ISE.

The RD&E collaboration will work to develop electrically conductive and optically transparent direct wafer bonds at room temperature using mismatched material combinations like gallium arsenide (GaAs) on silicon, GaAs on indium phosphide (InP), InP on germanium (Ge) and GaAs on gallium antimonide (GaSb) to boost efficiencies while offering significantly lower material cost.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Dr. Frank Dimroth, Head of department III-V – Epitaxy and Solar Cells at Fraunhofer ISE said, “Using direct semiconductor bond technology developed in cooperation with EVG, we expect that the best material choices for multi-junction solar cell devices will become available and allow us to increase the conversion efficiency toward 50 percent.”

According to Fraunhofer ISE, to achieve higher cell efficiencies requires the development of four- and five-junction solar cells with new material combinations, which can utilise the full spectrum between 300-2000nm.

Markus Wimplinger, corporate technology development and IP director for EVG said: “Fraunhofer ISE's broad expertise in the area of PV, specifically in concentrated PV cell manufacturing and photonics, will allow us to characterize bonding interfaces with respect to PV applications on our new ‘ComBond’ equipment platform.”   

EVG said its ‘ComBond’ technology enables the formation of bond interfaces between heterogeneous materials – such as silicon to compound semiconductors, compound semiconductors to compound semiconductors, Ge to silicon and Ge to compound semiconductors – at room temperature, while achieving excellent bonding strength on substrates as large as 200mm.

 

Read Next

October 13, 2025
France’s Engie and the UAE’s Masdar have been chosen to jointly develop a 1.5GW PV power plant near Abu Dhabi.
Premium
October 13, 2025
Brett Beattie of Castillo Engineering looks at some of the key land grading work that can make multimillion-dollar differences to projects.
October 13, 2025
Korean chemical production firm OCI Holdings has acquired a 65% stake in a Vietnamese solar wafer production plant, intending to export solar wafers to the US.
October 13, 2025
The world is on pace to exceed 3TW of cumulative solar installations by the end of the year, according to a report from DNV.
October 13, 2025
The Trump administration has cancelled the 6.2GW Esmeralda 7 solar project in Nevada – once touted as one of the largest in the world.
October 13, 2025
Two Chinese state-owned energy enterprises have signed cooperation agreements on PV and wind power projects with Saudi companies, with the total contract value exceeding RMB30 billion (US$4.2 billion). 

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK