EV Group working with Fraunhofer ISE on next-gen solar wafer bonding

June 4, 2013
Facebook
Twitter
LinkedIn
Reddit
Email

Multi-junction solar cells with conversion efficiencies of almost 50% could become cost effective via a collaboration between equipment supplier EV Group and Fraunhofer ISE.

The RD&E collaboration will work to develop electrically conductive and optically transparent direct wafer bonds at room temperature using mismatched material combinations like gallium arsenide (GaAs) on silicon, GaAs on indium phosphide (InP), InP on germanium (Ge) and GaAs on gallium antimonide (GaSb) to boost efficiencies while offering significantly lower material cost.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Dr. Frank Dimroth, Head of department III-V – Epitaxy and Solar Cells at Fraunhofer ISE said, “Using direct semiconductor bond technology developed in cooperation with EVG, we expect that the best material choices for multi-junction solar cell devices will become available and allow us to increase the conversion efficiency toward 50 percent.”

According to Fraunhofer ISE, to achieve higher cell efficiencies requires the development of four- and five-junction solar cells with new material combinations, which can utilise the full spectrum between 300-2000nm.

Markus Wimplinger, corporate technology development and IP director for EVG said: “Fraunhofer ISE's broad expertise in the area of PV, specifically in concentrated PV cell manufacturing and photonics, will allow us to characterize bonding interfaces with respect to PV applications on our new ‘ComBond’ equipment platform.”   

EVG said its ‘ComBond’ technology enables the formation of bond interfaces between heterogeneous materials – such as silicon to compound semiconductors, compound semiconductors to compound semiconductors, Ge to silicon and Ge to compound semiconductors – at room temperature, while achieving excellent bonding strength on substrates as large as 200mm.

 

Read Next

January 23, 2026
Suzhou Maxwell Technologies has secured a certified power conversion efficiency of 32.38% for a perovskite/silicon heterojunction (SHJ) tandem solar cell.
January 23, 2026
US renewables developer Hecate Energy has entered into a definitive business combination agreement with SPAC firm EGH Acquisition Corp (EGH).
January 23, 2026
US cadmium telluride (CdTe) thin-film solar manufacturer First Solar is facing a class action lawsuit investigation into its business practices following a downgrade in its stock.
January 23, 2026
MAHAPREIT has issued a tender for a 100MW floating solar project at the Tansa and Modak dams in Thane district, Maharashtra. 
January 23, 2026
Independent power producer (IPP) Atlas Renewable Energy has signed a solar PV power purchase agreement for a 128MWp plant in Colombia.
Premium
January 22, 2026
PV Talk: 'BESS and solar are the perfect bedfellows,' says Natasha Luther-Jones, about the potential for solar PV and BESS in Europe.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA