Fraunhofer ISE develops adhesives for industrial production of shingle cell modules

Facebook
Twitter
LinkedIn
Reddit
Email
The Fraunhofer Institute for Solar Energy Systems (ISE) has developed a bonding method for the interconnection of silicon solar cells for the industrial production of shingle modules. Image: Fraunhofer ISE

The Fraunhofer Institute for Solar Energy Systems (ISE) has developed a bonding method for the interconnection of silicon solar cells for the industrial production of shingle modules.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The high efficiency of modules with shingle cells and their aesthetic appearance are currently driving demand on the market. However, shingle cells cannot be soldered by conventional methods, due to mechanical stresses. Only through the adhesive technology that reliable and robust shingle strings can be produced.

Solution

Electrically conductive bonding of shingled cells on the industrial stringers can be used with specially developed adhesives. The adhesive can compensate for the thermal expansion of the module glass at changing ambient temperatures and is also lead-free. The stringer from teamtechnik Maschinen und Anlagen GmbH applies the electrically conductive adhesive using the screen printing process and interconnects the cell strips with high precision. 

Applications

With the narrow cell strips different module formats can be realized, which creates a lot of scope for specific applications. Currently, the experts at Fraunhofer ISE are working on optimizing the amount of adhesive and cell design as well as on the development of new fields of application.

Platform

By shingling, cell gaps are avoided, so that the module surface can be used maximally for the generation of energy and a homogeneous, aesthetic overall picture is created. Compared to conventional solar modules, the higher module efficiency results on the one hand from the larger active module area and have no shading losses due to overlying cell connectors. The resistance losses are lower by lower currents in the cell strips. These cell-to-module losses and gains can be achieved with the software tool SmartCalc.CTM of the Fraunhofer ISE.

Availability

Currently available. 

7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

June 27, 2025
Indian solar manufacturer Premier Energies has commissioned its 1.2GW TOPCon solar cell manufacturing line at Fab City, Hyderabad, Telangana.
June 26, 2025
International researchers led by King Abdullah University of Science and Technology (KAUST) have developed a new cooling technology that improves the power and longevity of solar cells.
June 26, 2025
A group of minority shareholders in Norwegian silicon firm REC Silicon has triggered an investigation into the circumstances surrounding the closure of the company’s US polysilicon production site.
June 26, 2025
PV solar cell manufacturer Halocell Energy has launched its first perovskite-based product called the Halocell Ambient Modules.
June 24, 2025
Chinese solar manufacturing giant LONGi has signed an agreement with Indonesia’s Pertamina New & Renewable Energy to build a 1.4GW module assembly plant in West Java, Indonesia.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Media Partners, Solar Media Events
July 2, 2025
Bangkok, Thailand
Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico