Fraunhofer ISE researchers claim that silicon solar cells are nearing 20% efficiency

February 24, 2011
Facebook
Twitter
LinkedIn
Reddit
Email

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have concluded after a testing with more advanced cell structures than are currently used, that large-area silicon solar cells are closer than ever at achieving 20% efficiency ratings. The newly researched cell structures differed in the type of silicon material, the base and the type of emitter used. Solar cells with a negatively conducting base are referred to as n-type, those with a positive conducting base are p-type cells and the emitter had the same inverse polarization of the base.

“For processing the emitter layer, we used three different procedures as follows: aluminum alloying and boron diffusion for the p-emitter layer of our n-type solar cells and phosphorous diffusion for the n-emitter layer of our p-type solar cells,” says Christian Schmiga, project leader at Fraunhofer ISE.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

In studying the n-type silicon solar cells with an aluminum-alloyed emitter, Fraunhofer ISE researchers were able to obtain 19.3% efficiency. The research team formed the emitter by screen-printing a paste that contained aluminum, followed by a short high-temperature firing period. Further, when studying the n-type solar cell with a boron-diffused emitter whose surface had an added new layer of aluminum-oxide, the cells produced 19.6% efficiency.

When testing the p-type solar cells, the research team had a phosphorous diffused emitter and used the laser-fired contact (LFC) technology that Fraunhofer ISE developed to achieve 19.6% efficiency.

All test solar cells were process on 125 x 125mm² monocrystalline silicon wafers. The Fraunhofer ISE research team noted that there were no added adjusting or structuring steps needed, which led to a simplified, yet quicker processing procedure. Currently, 80% of the crystalline silicon solar cells that are manufactured average between 14% and 19% efficiency, but with the results the team produced, Fraunhofer ISE believes that 20% efficiency is only a small matter of time away.

Read Next

December 19, 2025
German renewable energy developer BayWa r.e., along with its Dutch subsidiary GroenLeven, has sold a 46MW floating solar PV (FPV) project in the northern province of Friesland, the Netherlands.
December 19, 2025
The US House of Representatives has passed a permitting reform bill reducing the environmental scrutiny on large energy projects.
December 19, 2025
Wang Bohua, honorary chairman of the China PV Industry Association (CPIA), said that the polysilicon production in China experienced its first year-on-year decline since 2013, while wafer production registered its first year-on-year decline since 2009.
December 19, 2025
'The UK market has matured,' Guy Lavarack, chief investment officer at the Luminous Energy Group, tells PV Tech Premium this week.
Premium
December 19, 2025
PV Talk: Luminous Energy's Guy Lavarack says that interface risk, grid risk and talent risk are all key risk factors in Europe.
December 18, 2025
The latest edition of our print journal, PV Tech Power, is out today and available to download, where we deep dive into PV quality assurance.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 24, 2026
Warsaw, Poland