Fraunhofer ISE researchers claim that silicon solar cells are nearing 20% efficiency

February 24, 2011
Facebook
Twitter
LinkedIn
Reddit
Email

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have concluded after a testing with more advanced cell structures than are currently used, that large-area silicon solar cells are closer than ever at achieving 20% efficiency ratings. The newly researched cell structures differed in the type of silicon material, the base and the type of emitter used. Solar cells with a negatively conducting base are referred to as n-type, those with a positive conducting base are p-type cells and the emitter had the same inverse polarization of the base.

“For processing the emitter layer, we used three different procedures as follows: aluminum alloying and boron diffusion for the p-emitter layer of our n-type solar cells and phosphorous diffusion for the n-emitter layer of our p-type solar cells,” says Christian Schmiga, project leader at Fraunhofer ISE.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

In studying the n-type silicon solar cells with an aluminum-alloyed emitter, Fraunhofer ISE researchers were able to obtain 19.3% efficiency. The research team formed the emitter by screen-printing a paste that contained aluminum, followed by a short high-temperature firing period. Further, when studying the n-type solar cell with a boron-diffused emitter whose surface had an added new layer of aluminum-oxide, the cells produced 19.6% efficiency.

When testing the p-type solar cells, the research team had a phosphorous diffused emitter and used the laser-fired contact (LFC) technology that Fraunhofer ISE developed to achieve 19.6% efficiency.

All test solar cells were process on 125 x 125mm² monocrystalline silicon wafers. The Fraunhofer ISE research team noted that there were no added adjusting or structuring steps needed, which led to a simplified, yet quicker processing procedure. Currently, 80% of the crystalline silicon solar cells that are manufactured average between 14% and 19% efficiency, but with the results the team produced, Fraunhofer ISE believes that 20% efficiency is only a small matter of time away.

Read Next

November 17, 2025
Renewable energy developer SunCable has signed an Indigenous Land Use Agreement (ILUA) with the Powell Creek Native Title Holders, marking a milestone for the company’s AAPowerLink project in Australia's Northern Territory.
November 17, 2025
Jakson Group has started Phase 1 construction of its 6GW integrated solar ingot, wafer, cell and module manufacturing facility at Maksi, Madhya Pradesh.
November 17, 2025
India’s race to 500GW is being slowed by critical grid bottlenecks, NTPC PMI’s Abhinav Jindal told PV Tech.
November 17, 2025
Saatvik Green Energy, through its subsidiary Saatvik Solar Industries, has secured solar PV module orders worth INR1.77 billion (US$19.9 million). 
November 17, 2025
US solar module manufacturer First Solar will build a new production facility in the state of South Carolina, which will bring its US nameplate manufacturing capacity to 17.7GW by 2027.
Premium
November 17, 2025
PV Talk: India’s race to 500GW of clean energy is being slowed by critical bottlenecks. NTPC PMI’s deputy general manager Abhinav Jindal tells Shreeyashi Ojha what steps India must urgently take to stay on track with its 2030 targets.

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA