Frost & Sullivan back European auto industry link to solar applications

October 29, 2009
Facebook
Twitter
LinkedIn
Reddit
Email

Frost & Sullivan has released findings that a sunroof panel with solar cells can generate sufficient power to ventilate a vehicle interior. Currently, the auto industry is undergoing a move from the traditional internal combustion engines to battery powered motors. A combination of a more “green” thinking population, zero-emission vehicles, increased government spending on electric vehicles and the numerous vehicle prototypes are signs that electric vehicles could very well be dominate in the future.

“Solar cells are poised to achieve grid parity in the coming years,” says Frost & Sullivan Industry Analyst Roshan Devadoss. “Subsequently, solar cells costs will plummet, making them affordable for automotive applications.” Grid parity happens when the cost of electricity generated using solar cells is equal to the cost of that generated using fossil or nuclear fuels. Once grid parity is reached, solar cells will cease to be cost-intensive, leading to inexpensive automotive solutions.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

While electric vehicles deal with criticism in regards to their increased energy consumption, the idea of using renewable energy is a persuasive solution. Unfortunately, one of the biggest limitations for the use of solar panels in automotive applications is the extra weight they add. Polysilicon panels are heavy and apply a drag on the vehicle, which in turn reduces the range and life of the battery on the electric or hybrid vehicle. The other commercially available solution, thin-film solar cells, might be an alternative to the polysilicon panels. Thin-film solar cells are flexible and light-weight in comparison to polysilicon cells, though they have a lower efficiency rating than the polysilicon.

Auto makers are investigating the use of thin-film technologies that are commercially available and have designed concept vehicles using them. Third-generation solar cells are under development and will more than likely be installed in the interior of the vehicles as well as on the roofs, doors and windows.

Read Next

January 16, 2026
The Australian government has announced AU$24.7 million in funding over three years to establish a National Solar Panel Recycling Pilot.
January 16, 2026
Canada-based solar mounting systems provider Polar Racking has entered the Australian market through its involvement in the 240MW Maryvale solar-plus-storage project in New South Wales, marking the company's first project deployment in the country.
Premium
January 15, 2026
Analysis: Expected changes to the EU’s cybersecurity laws that could have significant implications for the continent’s solar industry have been delayed, reportedly due to disagreement between officials and member states over how far they should go.
January 15, 2026
Enphase has begun US shipments of its new IQ9N-3P three-phase gallium nitride-based microinverter aimed at commercial rooftops.
January 15, 2026
Neoen has signed a 25-year PPA to sell electricity generated at its 157MW Mino Giizis project in Canada to SaskPower.
January 15, 2026
The European Bank for Reconstruction and Development (EBRD) will invest almost US$200 million in a 300MW/75MWh solar-plus-storage project in Uzbekistan.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 3, 2026
Málaga, Spain