Fujitsu Laboratories software automates production-line image recognition

Facebook
Twitter
LinkedIn
Reddit
Email

Fujitsu Laboratories has announced the development of a technology for automatically generating image-recognition programs that accurately detect the positions of components as captured by cameras in automated assembly processes by utilizing images of electronic components and IT equipment.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Automatically generated image-processing programs that use machine learning have not been able to detect positions up until now, requiring that experts individually develop image-recognition programs, which has resulted in a lengthy period of time to get a line into operation and making it impossible to respond quickly in the course of operations or to peripheral conditions.  As a result, any changes to the manufacturing setup, such as a machine's operating parameters, could involve more than a week's time spent revising the program, during which time the production line would sit idle. 

Solution

Fujitsu Laboratories developed a technique for automatically generating image-processing programs that detect positions by controlling the order in which the various image-processing functions that make up a program are combined, and using machine learning based on the similarity of shapes. Samples of the object to be detected are presented as teaching materials, and this makes it possible to automatically generate an image-recognition program in roughly eight hours, or one-tenth the time previously required. In trials to assess positional detection of components during assembly, something that has not previously been amenable to automation, recognition rates, which previously had been stuck below 50%, dramatically improved to 97% or higher. The time required to revise image-recognition programs was also dramatically reduced, to one-tenth the previous time. Additional benefits of this very high recognition rate are that positional deviations during component assembly can be halved and assembly time can be reduced to two-thirds. 

Applications

Wide range of automated assembly line requirements such as wafers and solar cell processing and handling.

Platform

To make the machine-learning process more efficient, Fujitsu Laboratories devised three building blocks: the teacher, the grader, and the teaching material. 

Availability

September, 2014.

Read Next

September 15, 2025
Advances in edge-based artificial intelligence are helping make solar and storage interoperable by tackling the data challenge, writes Andrew Foster.
September 15, 2025
Italy’s latest renewable energy tender has received 12GW of bids, of which the majority, 10GW, came from solar PV.
September 15, 2025
Sunrun has priced a securitisation of leases and power purchase agreements, taking its non-recourse debt capital raised in Q3 above US$1.5 billion. 
September 15, 2025
Norwegian energy firm Statkraft has agreed to divest a portion of its renewable energy portfolio to Serentica Renewables.
September 15, 2025
UNSW spin-out company Lab360 Solar has been awarded funding from ARENA to bring its drone-based PV inspection technology to market.
Premium
September 15, 2025
The UK government and solar industry have jointly published a long-anticipated roadmap detailing how to maximise the country’s solar potential. Chris Hewett, CEO of Solar Energy UK takes a closer look at the details.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines