The growing potential for MLPE in utility-scale solar

By SolarEdge's Lior Handelsman argues the case for MLPE.
Facebook
Twitter
LinkedIn
Reddit
Email
MLPE, coming to utility-scale solar soon? Source: SunEdison.

SPONSORED: In the last decade, the PV market has gone through some incredible transformations. The market has accelerated and expanded, prices have declined, subsidy evolutions have evolved and grid parity has been achieved in many regions.

With this rapid growth, new technologies and players have joined the industry and have proven themselves to be market disruptors. One such disrupter is module-level power electronics (MLPE). While MLPE value was first recognized in the residential market, the technology is now increasingly used in commercial PV solutions and its next step is headed towards utility-scale projects.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

When MLPE technology, such as power optimizers, was first introduced the PV market was sceptical and approached the technology with caution. The industry initially identified MLPE as a niche solution, such as for shaded or complex roofs. But the residential PV market quickly recognized the benefits of MLPE and today it has a market share of nearly 50% according to IHS.

Even while the residential market was adopting the technology, industry professionals did not yet believe that MLPE could provide value in commercial systems. Yet as technology continues to advance and scalability improves, perceptions are shifting and MLPE is proving itself to be just as valuable to commercial systems as it is to the residential market. In fact, there are already a number of utility sites that have decided to implement power optimizers, such as a 12MW site in Turkey, a 27MW site in APAC, and six sites with a cumulative of 50MWs in Israel.

There are a number of factors leading the utility PV market to become open to deploying MLPE. One of the most important factors is the expertise and knowledge gained by PV professionals as the market matures. With GWs of aging systems in the field, the industry has gained new insights into the importance of OPEX compared to CAPEX and both of their effects on the lifetime revenue of PV systems. In the past, businesses focused more on CAPEX and largely overlooked OPEX during system planning. This is because the industry did not have sufficient field experience to properly calculate OPEX or understand its long-term impact on performance.

Now the industry has better insight into how to properly account for issues such as downtime from module-level mismatch, PID, truck rolls, and more, when evaluating the impact of CAPEX and OPEX on lifetime ROI.

This change has already started a shift towards string inverters and away from central inverters in order to overcome some of their inherent drawbacks. For instance, string inverters help reduce expensive maintenance contracts, eliminate requirements for specialized O&M teams, and minimize the impact of a malfunction so that it does not cause significant downtime in a large section of the array. This trend towards a decentralized architecture to decrease OPEX means that the utility sector is well positioned to understand the value of MLPE despite CAPEX increases. While some MLPE technologies may be less scalable, DC optimized technology provides the benefits of both MLPE and string inverters in order to achieve utility-sized scalability.

One example of how OPEX costs can be reduced with power optimizers is their warranty structure. With DC optimized inverter solutions, because the solution is split into two products, so are their warranties. Power optimizers have a standard 25-year warranty, while inverters have a 12-year one. As such, 60% of the inverter solution is warranted for the lifetime of the PV system – compared to the industry standard of five years. So, if the inverter needs to be replaced after the warranty period is over in a DC optimized inverter solution, then the replacement cost is less than half, while the longer inverter warranty can further reduce the costs. 

There are a number of other factors that help make the utility sector ripe for MLPE, such as the decreasing costs of modules. This is because as module costs decline and become a shrinking percentage of the CAPEX, budget can be allocated to include MLPE in utility-scale products.

In addition, technology continues to improve. For instance, larger-sized string inverters and MLPE that can be connected to multiple panels and provide multiple MPPTs can improve scalability. But one of the most important factors that could influence adoption of MLPE in the utility sector is the growing impact that module-level monitoring has on system performance and RoI. If high-resolution monitoring is requested in larger sites, then MLPE can provide the benefits of both monitoring along with more energy, longer strings, and enhanced safety for nearly the same cost as just adding monitoring. With all of these considerations, MLPE has potential for a bright future in the utility sector.

Lior Handelsman founded SolarEdge in 2006 and currently serves as our Vice President of Marketing and Product Strategy in which he is responsible for defining and steering SolarEdge’s strategic global marketing activities, media outreach, product roadmap and vision, corporate product strategy, as well global product management, and corporate business development. Prior to founding SolarEdge, Mr. Handelsman spent 11 years leading power electronics research and development teams and directing large-scale, multidisciplinary research and development projects. Mr. Handelsman holds a B.S. in Electrical Engineering (cum laude) and an MBA from the Technion, Israel’s Institute of Technology.

Read Next

July 3, 2025
Malaysian engineering and infrastructure giant Gamuda has expanded its presence in the Australian renewables sector by partnering with Tasmanian landowners to build a 1.2GW portfolio, which includes solar PV.
July 2, 2025
Indigenous-led renewable energy company Yindjibarndi Energy Corporation (YEC) has submitted plans for a hybrid wind and solar PV renewable energy project to the Australian government’s Environment Protection and Biodiversity Conservation (EPBC) Act.
July 2, 2025
Robotics company Luminous has received AU$4.9 million (US$3.2 million) via Australia’s Solar ScaleUp Challenge to support deploying its ‘LUMI’ technology at utility-scale solar PV power plants.
July 1, 2025
French private equity firm Ardian Clean Energy Evergreen Fund (ACEEF) has bought 117 solar PV plants, worth 116MW of total capacity in several locations in Italy.
July 1, 2025
A five-year research initiative is underway in Australia to test the viability of floating solar systems on irrigation dams.
June 30, 2025
Australian module manufacturer Tindo Solar has secured a 30MW solar module supply agreement to power Australia's first "net zero pipeline”.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 22, 2025
Bilbao, Spain
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK