Imec and EnergyVille launching precision PV energy yield simulation software

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email
 It can also be used to make a rapid assessment of material and technology changes at the cell and module level and their influence on the levelized cost-of-electricity (LCOE). Image: imec

Imec and EnergyVille are introducing new simulation software that accurately predicts the daily energy yield of solar cells and solar modules under varying meteorological and irradiation conditions at Intersolar Europe. Imec’s model combines optical, thermal and electrical parameters to provide detailed insight on thermal gradients in the solar module. The model integrates the effect of these gradients, resulting in a significantly better accuracy (root mean square error of only 2.5%) than commercially available software packages for energy yield estimation. It can also be used to make a rapid assessment of material and technology changes at the cell and module level and their influence on the levelized cost-of-electricity (LCOE).

Problem

Solar cell efficiencies and photovoltaic module performances are typically only measured under standard lab conditions. However, in reality, photovoltaic modules are operated in the field under conditions that are substantially different from these standard lab conditions. They are exposed to varying meteorological conditions in terms of irradiation, temperature and wind, which, in addition, all vary during the course of the day. 

Solution

In contrast to most existing models for energy yield calculation, imec’s model starts from the physical parameters of the solar cells and the used materials, and includes on top of that their variations due these changing external conditions. In this way a ‘closer to reality’ model is obtained, enabling a more precise assessment of the effects of solar cell and module technology changes on the energy yield of these photovoltaic cells and modules. Moreover, it is also the ideal starting point to come up with significantly improved short-term energy yield forecasting, which will lead to lower lost opportunity costs and better energy management systems for PV power plants as well as residential solar systems. This means that the model could e.g. become very useful for PV plant operators and electricity grid operators, enabling them to better forecast the short-term varying output of PV power plants, in this way limiting curtailment situations and grid balancing issues, and hence create more value across the full renewable energy value chain.

Applications

Simulation software for high accuracy modeling of daily energy yield of solar cells and solar modules in residential, commercial and utility-scale segments.

Platform

Imec’s simulation software features a coupled optical-thermal-electrical approach and provides detailed insight on thermal gradients in the solar module and their effect on energy yield. The incorporation of wind and thermal transient effects produced a highly accurate calculation of daily energy yield with a root mean square error of only 2.5 percent, under strongly varying meteorological conditions (e.g. clouds passing by, changes in wind speed, compared with the actual measured output. This is significantly better than energy yield calculations that could be obtained using commercial software packages under these varying weather circumstances.

Availability

June 2017, onwards.

Read Next

June 2, 2021
Solar cell manufacturer Maxwell Technologies has celebrated a record mass production efficiency for its heterojunction (HJ) solar cell.
June 2, 2021
The first phase of GCL System Integration Technology's (GCL-SI) 60GW module factory in Hefei, in China’s Anhui Province, is on track to start production this September.
June 1, 2021
Renewables investor Magnora AG has said it will increase its investment in perovskite solar specialist Evolar, taking a 40.7% stake in the company.
May 31, 2021
Researchers at the University of Sheffield have found a new way to extend the life of perovskite materials by more than three months, paving the way for new solar cell technologies.
May 13, 2021
The solar module manufacturing subsidiary of Italian utility Enel is aiming to scale up annual production capacity to 3GW in the second half of 2023, the company has confirmed.
May 10, 2021
LONGi Solar has set a record conversion efficiency of 25.09% for its N-type monocrystalline bifacial TOPCon cell that has been independently verified by the Institute for Solar Energy Research in Hamelin.

Subscribe to Newsletter

Upcoming Events

Solar Media Events, Upcoming Webinars
July 29, 2021
Webinar
Upcoming Webinars
August 19, 2021
At 9am (PT) | 6pm (CEST)
Solar Media Events
August 25, 2021
Solar Media Events, Upcoming Webinars
October 6, 2021