Imec sees nPERT solar cell roadmap surpassing 24% conversion efficiencies

Facebook
Twitter
LinkedIn
Reddit
Email
 imec has detailed a path for its nPERT (n-type Passivated Emitter and Rear Totally diffused) solar cell technology to reach conversion efficiencies in excess of 24% for volume production applications. Image: imec

European research and innovation hub centre imec has detailed a path for its nPERT (n-type Passivated Emitter and Rear Totally diffused) solar cell technology to reach conversion efficiencies in excess of 24% for volume production applications.
 
During last week’s EU PVSEC conference that was held in Brussels, Belgium, imec announced that its latest generation of large-area monofacial screen-printed rear-emitter nPERT cells achieved a conversion efficiency of 23.03%, which had been certified by Fraunhofer ISE CalLab.

“Until now, nPERT solar technology has not yet found the traction it deserves in the industry,” noted Loic Tous, senior researcher at imec. “With these ever-improving results, which we achieved by applying knowledge gained from our bifacial nPERT project, we are now demonstrating the potential of nPERT technology. The advantages in stability and efficiency potential over p-type PERC cells, while using the same equipment with the addition of a Boron diffusion, make this a very promising technology for future manufacturing lines.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

According to imec, its nPERT technology is projected to reach 23.5% efficiency by the end of this year, with a clear technology roadmap to eventually surpass 24%.

N-type PERT technology could become a cost-effective contender to P-type PERC, which is being ramped extensively as the next-gen mainstream technology ahead of an expected shift to heterojunction technologies (HJT) in the next five years. 

However, nPERT technology could compete in the 24%-plus efficiency space that HJT technology is expected to become mainstream as it retains key printing and other equipment from the PERC migration. 

According to imec, nPERT technology has a number of inherent advantages over P-type PERC cell technology, notably the absence of light induced degradation (LID) and are less sensitive to metal impurities that limit cell efficiencies. 
 
Imec has fabricated the M2-sized cells (area: 244.3 cm²) on its pilot line with industry-compatible tools and recipes in a process that is an upgrade of the pPERC fabrication process. This includes using a similar layout of an n+ region (Front Surface Field) on the illuminated side and a p+ region (as rear emitter) on the opposite side and adding a cost-effective boron diffusion.

Key to nPERT technology adoption will also be its cost effectiveness against HJT technologies capable of 24%-plus conversion efficiencies. 

7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.
10 March 2026
Frankfurt, Germany
The conference will gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing out to 2030 and beyond.

Read Next

May 15, 2025
Solar manufacturer Canadian Solar recorded a slight increase in module shipments and endured losses in Q1 amid 'geopolitical complexities.'
May 14, 2025
US energy officials have found unexplained communication equipment inside some Chinese-made inverter devices.
Premium
May 14, 2025
As the University of Queensland take the first steps towards commercialising a tin halide perovskite solar cell concept, George Heynes explores the development of the technology.
May 6, 2025
While other technologies exist, c-Si solar PV technology is the leading candidate for large-scale energy production, writes Radovan Kopecek.
May 1, 2025
CSI Solar, the PV manufacturing subsidiary of Canadian Solar, has posted massively decreased profits in Q1 2025 amid what it described as “high trade barriers” and “severe supply-demand imbalances”.
April 29, 2025
Chinese solar manufacturing giant JinkoSolar posted net losses of US$181.7 million in the first quarter of 2025 amid low product prices and “changes in international trade policies.”

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 8, 2025
Asia