Imec and partners reveal small area ‘IBC’ Si solar cell with 23% plus efficiency

December 1, 2011
Facebook
Twitter
LinkedIn
Reddit
Email

Pushing the boundaries of conventional silicon solar cell technology, while offering a low-cost production approach, took another step forward, according to R&D organisation, imec. In conjunction with its industrial affiliates, researchers have developed a small-area (2×2 cm2) – interdigitated back-contact (IBC) silicon solar cells that has demonstrated a conversion efficiency of 23.3%. Work will now focus on developing a large-area and production viable cell and process steps.

Jef Poortmans, director of imec’s photovoltaic R&D program commented: “We are delighted to demonstrate these excellent efficiency results on IBC silicon solar cells. They prove the relevance of the IBC technology to our industrial partners. Such high efficiencies on small-area IBC silicon solar cells are a perfect base for further developing a large-area and industrially feasible IBC cell technology at imec.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Imec noted that it used an n-type base float-zone (FZ) silicon substrate coupled to an array carefully selected process steps. A wet chemical random pyramid textured surface was employed, followed by a boron diffused emitter, phosphorous diffused front- and back surface fields, a thermally grown silicon dioxide for surface passivation, and a SiN single layer anti-reflective coating were used.

Interestingly, imec said it used a lithography tool, used extensively in the semiconductor industry for patterning to determine the different contacts at the backside for aluminum metallization. Imec told PV-Tech that it was working in parallel to develop a ‘litho-free’ solution to further reduce cost for commercial adoption.

According to imec, the advanced IBC cell achieved a designated area conversion efficiency of 23.3% (Jsc = 41.6 mA, Voc=696 mV, FF=80.4%), certified by ISE-Callabs.

Imec’s silicon photovoltaic industrial affiliation program partners include, Schott Solar, Total, Photovoltech, GDF-SUEZ, Solland Solar, Kaneka and Dow Corning.
 

Read Next

December 18, 2025
The latest edition of our print journal, PV Tech Power, is out today and available to download, where we deep dive into PV quality assurance.
Premium
December 18, 2025
PV Talk: Paul Gebhardt of Fraunhofer ISE discusses reliability issues facing advanced PV modules, an issue which isn't going anywhere.
December 18, 2025
French renewables company Voltalia has started site preparation works on a 43MW/135MWh solar-plus-storage project in French Guiana, a French overseas territory in South America.
December 18, 2025
Pivot Energy has completed three financing agreements, totalling US$225 million, while CleanCapital has raised US$185 million.
December 18, 2025
UAE-based renewables developer AMEA Power has commissioned a 120MW solar PV plant in the central Tunisian governorate of Kairouan, the country’s largest operational PV project.
Sponsored
December 18, 2025
If we imagine the development of PV industry in terms of scale and quality on a single curve, its trajectory has clearly been moving upward.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 24, 2026
Warsaw, Poland