Imec and partners reveal small area ‘IBC’ Si solar cell with 23% plus efficiency

Facebook
Twitter
LinkedIn
Reddit
Email

Pushing the boundaries of conventional silicon solar cell technology, while offering a low-cost production approach, took another step forward, according to R&D organisation, imec. In conjunction with its industrial affiliates, researchers have developed a small-area (2×2 cm2) – interdigitated back-contact (IBC) silicon solar cells that has demonstrated a conversion efficiency of 23.3%. Work will now focus on developing a large-area and production viable cell and process steps.

Jef Poortmans, director of imec’s photovoltaic R&D program commented: “We are delighted to demonstrate these excellent efficiency results on IBC silicon solar cells. They prove the relevance of the IBC technology to our industrial partners. Such high efficiencies on small-area IBC silicon solar cells are a perfect base for further developing a large-area and industrially feasible IBC cell technology at imec.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Imec noted that it used an n-type base float-zone (FZ) silicon substrate coupled to an array carefully selected process steps. A wet chemical random pyramid textured surface was employed, followed by a boron diffused emitter, phosphorous diffused front- and back surface fields, a thermally grown silicon dioxide for surface passivation, and a SiN single layer anti-reflective coating were used.

Interestingly, imec said it used a lithography tool, used extensively in the semiconductor industry for patterning to determine the different contacts at the backside for aluminum metallization. Imec told PV-Tech that it was working in parallel to develop a ‘litho-free’ solution to further reduce cost for commercial adoption.

According to imec, the advanced IBC cell achieved a designated area conversion efficiency of 23.3% (Jsc = 41.6 mA, Voc=696 mV, FF=80.4%), certified by ISE-Callabs.

Imec’s silicon photovoltaic industrial affiliation program partners include, Schott Solar, Total, Photovoltech, GDF-SUEZ, Solland Solar, Kaneka and Dow Corning.
 

Read Next

September 18, 2025
The Canadian Renewable Energy Association (CanREA) has forecast that Canada will add between 17GW and 26GW of solar PV over the next decade.
September 18, 2025
Researchers have called for enhanced international standards to detect ultraviolet-induced degradation (UVID) in PV modules after identifying “severe” levels of the problem in operational n-type panels.             
September 18, 2025
Indian PV makers have welcomed the government’s plan to add solar wafers to its ALMM List-III from June 2028.
September 17, 2025
US renewables developer Longroad Energy has reached financial close for its 400MW 1000 Mile solar project in the US state of Texas.
September 17, 2025
Spanish renewables developer and operator Acciona Energía has commissioned its 412MWp Juna solar PV plant in Kawani village in the western state of Rajasthan. 
September 17, 2025
Spanish IPP Velto Renewables has acquired a portfolio of 53 operational solar assets in Spain with a combined capacity of 260MW.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines
Solar Media Events
October 7, 2025
San Francisco Bay Area, USA