Imec and partners reveal small area ‘IBC’ Si solar cell with 23% plus efficiency

Facebook
Twitter
LinkedIn
Reddit
Email

Pushing the boundaries of conventional silicon solar cell technology, while offering a low-cost production approach, took another step forward, according to R&D organisation, imec. In conjunction with its industrial affiliates, researchers have developed a small-area (2×2 cm2) – interdigitated back-contact (IBC) silicon solar cells that has demonstrated a conversion efficiency of 23.3%. Work will now focus on developing a large-area and production viable cell and process steps.

Jef Poortmans, director of imec’s photovoltaic R&D program commented: “We are delighted to demonstrate these excellent efficiency results on IBC silicon solar cells. They prove the relevance of the IBC technology to our industrial partners. Such high efficiencies on small-area IBC silicon solar cells are a perfect base for further developing a large-area and industrially feasible IBC cell technology at imec.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Imec noted that it used an n-type base float-zone (FZ) silicon substrate coupled to an array carefully selected process steps. A wet chemical random pyramid textured surface was employed, followed by a boron diffused emitter, phosphorous diffused front- and back surface fields, a thermally grown silicon dioxide for surface passivation, and a SiN single layer anti-reflective coating were used.

Interestingly, imec said it used a lithography tool, used extensively in the semiconductor industry for patterning to determine the different contacts at the backside for aluminum metallization. Imec told PV-Tech that it was working in parallel to develop a ‘litho-free’ solution to further reduce cost for commercial adoption.

According to imec, the advanced IBC cell achieved a designated area conversion efficiency of 23.3% (Jsc = 41.6 mA, Voc=696 mV, FF=80.4%), certified by ISE-Callabs.

Imec’s silicon photovoltaic industrial affiliation program partners include, Schott Solar, Total, Photovoltech, GDF-SUEZ, Solland Solar, Kaneka and Dow Corning.
 

Read Next

July 25, 2025
A round-up of news from the Indian solar sector this week, including Reliance Industries' cell plant, Juniper Green Energy powering solar PV and Solex Energy launching new modules.
Premium
July 25, 2025
At the SNEC expo, Carrie Xiao took the temperature of the industry as it seeks a way out of cutthroat competition and squeezed margins.
July 25, 2025
The US state of New York expects to install 35GW of solar PV and 9.4GW of battery energy storage system (BESS) by 2040.
July 25, 2025
VDE Americas has verified the successful deployment of the hail mitigation function of GameChange Solar’s Genius trackers.
Premium
July 25, 2025
Prices of products across various segments of China's PV industry chain—polysilicon, wafers, cells, modules—have begun to rise recently.
July 25, 2025
According to a report from the International Renewable Energy Agency (IRENA), the global levelised cost of electricity (LCOE) for solar PV reached US$0.043/kWh in 2024.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK