Imec and partners reveal small area ‘IBC’ Si solar cell with 23% plus efficiency

Facebook
Twitter
LinkedIn
Reddit
Email

Pushing the boundaries of conventional silicon solar cell technology, while offering a low-cost production approach, took another step forward, according to R&D organisation, imec. In conjunction with its industrial affiliates, researchers have developed a small-area (2×2 cm2) – interdigitated back-contact (IBC) silicon solar cells that has demonstrated a conversion efficiency of 23.3%. Work will now focus on developing a large-area and production viable cell and process steps.

Jef Poortmans, director of imec’s photovoltaic R&D program commented: “We are delighted to demonstrate these excellent efficiency results on IBC silicon solar cells. They prove the relevance of the IBC technology to our industrial partners. Such high efficiencies on small-area IBC silicon solar cells are a perfect base for further developing a large-area and industrially feasible IBC cell technology at imec.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Imec noted that it used an n-type base float-zone (FZ) silicon substrate coupled to an array carefully selected process steps. A wet chemical random pyramid textured surface was employed, followed by a boron diffused emitter, phosphorous diffused front- and back surface fields, a thermally grown silicon dioxide for surface passivation, and a SiN single layer anti-reflective coating were used.

Interestingly, imec said it used a lithography tool, used extensively in the semiconductor industry for patterning to determine the different contacts at the backside for aluminum metallization. Imec told PV-Tech that it was working in parallel to develop a ‘litho-free’ solution to further reduce cost for commercial adoption.

According to imec, the advanced IBC cell achieved a designated area conversion efficiency of 23.3% (Jsc = 41.6 mA, Voc=696 mV, FF=80.4%), certified by ISE-Callabs.

Imec’s silicon photovoltaic industrial affiliation program partners include, Schott Solar, Total, Photovoltech, GDF-SUEZ, Solland Solar, Kaneka and Dow Corning.
 

Read Next

June 6, 2025
France has registered zero or negative energy prices for 90% of days in May 2025, according to data from energy storage developer Storio Energy.
June 6, 2025
rPlus Energies has secured more than US$500 million for an 800MW solar-plus-storage project in Emery County, Utah, US.  
June 6, 2025
Eternal Sun has acquired German solar simulator provider Wavelabs, which has resulted in the formation of a new subsidy, Wavelabs Eternal Sun.
Premium
June 6, 2025
Europe must secure the 'strategic segments' of the solar supply chain, according to experts at a PV Tech panel at this year's Intersolar event.
June 6, 2025
Australia’s Solar Energy Industries Association (SEIA) has called on Australia’s climate change and energy minister, Chris Bowen, to “urgently intervene” on a rule change that could threaten to derail the uptake of rooftop solar PV.
June 6, 2025
ElectraNet has revealed that renewables supplied 100% of South Australia's electricity demand for 27% of 2024, roughly 99 days.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 17, 2025
Napa, USA
Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
September 16, 2025
Athens, Greece