Imec pushes i-PERC solar cell to 20.2% efficiency with lower processing costs

November 27, 2013
Facebook
Twitter
LinkedIn
Reddit
Email

R&D centre, imec has implemented a laser doping process to its i-PERC solar cell that pushes conversion efficiencies to 20.2%, while claiming lower processing costs that could result in faster commercial adoption.

According to imec, a laser doping processing sequence eliminates the need of a furnace firing step to realise the local aluminium Back Surface Field (BSF). Replacement of the high-temperature ste, avoids passivation degradation of the rear (Al2O3) layer created by atomic layer deposition (ALD).

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The replacement laser doping step is also said to avoid optical degradation of the rear dielectric/metal stack that generates higher conversion efficiencies. The new process sequence is said to be extremely simple as the thin ALD (Al2O3) acts at the same time as passivation layer and doping source, while laser processing enables in one step the contact patterning and the local BSF formation.

In addition, the high Fill Factor of the cells (up to 80%) indicates an excellent contact quality, according to imec.

Combined with imec’s Ni/Cu plating sequence for front contact formation, a low temperature metallisation solution for i-PERC cells has been developed.

“Cost-of-ownership and process simplicity are key factor for the industry to adopt new technologies,” said Jozef Szlufcik, Si PV programme director at imec. “Our achievement, implying a substantial simplification of the i-PERC manufacturing process, is an important step towards reducing the cost-of-ownership of i-PERC technology and as such, a milestone in bringing this high-efficiency technology for silicon solar cells to the market.”

imec achieved the 20.2% conversion efficiency using large area (156x156mm2) i-PERC silicon cells on p-type Cz-Si.

At last year's  EU PVSEC, imec, RENA and SoLayTec presented a thin (165µm), large area (156x156mm2) i-PERC-type solar cells with ALD passivation that achieved a cell efficiency of 19.6%, without a selective emitter using an industrial screen printing process flow. At this year's event, the team demonstrated at 20.1% cell. 
 

Read Next

Premium
October 17, 2025
According to Ronak Maheshwari of CRC-IB, there has been a struggle for US renewable power projects to secure necessary equity .
October 17, 2025
Norwegian renewable energy firm Scatec has signed lease agreements for 64MW of solar PV and 10MWh of energy storage capacity in Liberia and Sierra Leone.
October 17, 2025
A group of over 20 US states are suing the Trump administration for the cancellation of the US$7 billion Solar For All Scheme.
October 16, 2025
Masdar and Turkey have entered the final stage of US$1 billion agreement to develop the 1.1GW plant in Bor, Niğde Province, central Turkey.
October 16, 2025
T1 Energy and Nextracker have agreed to use the latter’s steel module frames at the former’s new 5GW module manufacturing facility in Dallas.
October 16, 2025
US utility-scale solar additions grew by 56% in 2024, reaching 30GW from 2023’s 19GW and representing over 54% of all new electricity generation capacity added in the country last year.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK