Imec pushes i-PERC solar cell to 20.2% efficiency with lower processing costs

November 27, 2013
Facebook
Twitter
LinkedIn
Reddit
Email

R&D centre, imec has implemented a laser doping process to its i-PERC solar cell that pushes conversion efficiencies to 20.2%, while claiming lower processing costs that could result in faster commercial adoption.

According to imec, a laser doping processing sequence eliminates the need of a furnace firing step to realise the local aluminium Back Surface Field (BSF). Replacement of the high-temperature ste, avoids passivation degradation of the rear (Al2O3) layer created by atomic layer deposition (ALD).

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The replacement laser doping step is also said to avoid optical degradation of the rear dielectric/metal stack that generates higher conversion efficiencies. The new process sequence is said to be extremely simple as the thin ALD (Al2O3) acts at the same time as passivation layer and doping source, while laser processing enables in one step the contact patterning and the local BSF formation.

In addition, the high Fill Factor of the cells (up to 80%) indicates an excellent contact quality, according to imec.

Combined with imec’s Ni/Cu plating sequence for front contact formation, a low temperature metallisation solution for i-PERC cells has been developed.

“Cost-of-ownership and process simplicity are key factor for the industry to adopt new technologies,” said Jozef Szlufcik, Si PV programme director at imec. “Our achievement, implying a substantial simplification of the i-PERC manufacturing process, is an important step towards reducing the cost-of-ownership of i-PERC technology and as such, a milestone in bringing this high-efficiency technology for silicon solar cells to the market.”

imec achieved the 20.2% conversion efficiency using large area (156x156mm2) i-PERC silicon cells on p-type Cz-Si.

At last year's  EU PVSEC, imec, RENA and SoLayTec presented a thin (165µm), large area (156x156mm2) i-PERC-type solar cells with ALD passivation that achieved a cell efficiency of 19.6%, without a selective emitter using an industrial screen printing process flow. At this year's event, the team demonstrated at 20.1% cell. 
 

Read Next

January 21, 2026
Total corporate funding in the solar PV industry reached US$22.2 billion in 2025, a 16% year-on-year decrease.
Premium
January 21, 2026
To say that it has been a busy time for the US solar industry lately would be an understatement, especially at the policy and tariff level.
January 21, 2026
Solar polysilicon manufacturer United Solar Holding has secured over US$900 million in financing for its polysilicon plant in Oman.
January 21, 2026
LONGi Green, Tongwei, JA Solar, TCL Zhonghuan and Aiko Solar are projecting a combined 2025 deficit of RMB28.9-32.8 billion (US$4.1-4.7 billion).
January 21, 2026
Without quality control, even expensive, high-precision radiometers can generate misleading data, according to Solargis' Marcel Suri.
January 21, 2026
Energy generation and storage developer Estuary Power has completed the final phase of construction at its Escape solar project in Lincoln County, Nevada. 

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA