Imec pushes i-PERC solar cell to 20.2% efficiency with lower processing costs

Facebook
Twitter
LinkedIn
Reddit
Email

R&D centre, imec has implemented a laser doping process to its i-PERC solar cell that pushes conversion efficiencies to 20.2%, while claiming lower processing costs that could result in faster commercial adoption.

According to imec, a laser doping processing sequence eliminates the need of a furnace firing step to realise the local aluminium Back Surface Field (BSF). Replacement of the high-temperature ste, avoids passivation degradation of the rear (Al2O3) layer created by atomic layer deposition (ALD).

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The replacement laser doping step is also said to avoid optical degradation of the rear dielectric/metal stack that generates higher conversion efficiencies. The new process sequence is said to be extremely simple as the thin ALD (Al2O3) acts at the same time as passivation layer and doping source, while laser processing enables in one step the contact patterning and the local BSF formation.

In addition, the high Fill Factor of the cells (up to 80%) indicates an excellent contact quality, according to imec.

Combined with imec’s Ni/Cu plating sequence for front contact formation, a low temperature metallisation solution for i-PERC cells has been developed.

“Cost-of-ownership and process simplicity are key factor for the industry to adopt new technologies,” said Jozef Szlufcik, Si PV programme director at imec. “Our achievement, implying a substantial simplification of the i-PERC manufacturing process, is an important step towards reducing the cost-of-ownership of i-PERC technology and as such, a milestone in bringing this high-efficiency technology for silicon solar cells to the market.”

imec achieved the 20.2% conversion efficiency using large area (156x156mm2) i-PERC silicon cells on p-type Cz-Si.

At last year's  EU PVSEC, imec, RENA and SoLayTec presented a thin (165µm), large area (156x156mm2) i-PERC-type solar cells with ALD passivation that achieved a cell efficiency of 19.6%, without a selective emitter using an industrial screen printing process flow. At this year's event, the team demonstrated at 20.1% cell. 
 

Read Next

May 7, 2025
Chinese module manufacturer JA Solar has penned a 100MW supply agreement with YES Group to provide its DeepBlue 4.0 Pro modules in Australia.
May 6, 2025
Australia's Labor Party, led by Anthony Albanese, secured a landslide victory and a second consecutive term, in the 2025 federal election.
May 6, 2025
Independent power producer (IPP) Cypress Creek Renewables has secured $150 million in financing to advance the construction of its 104MW Ostrea Solar project in northeast Yakima County, Washington. 
May 6, 2025
Swedish thin-film solar manufacturer Midsummer signed a 15MW order for a turnkey thin-film solar cells production line.
May 6, 2025
Building floating PV (FPV) projects on just 10% of the world’s water reservoirs could almost single-handedly meet global electricity demand.
May 6, 2025
The rapidly changing nature of the world’s energy mix has necessitated similarly rapid changes in the solar PPA space.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
May 7, 2025
Munich, Germany
Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK