Intersolar 2015: Imec tops n-PERT cell efficiency of 22.5%

June 10, 2015
Facebook
Twitter
LinkedIn
Reddit
Email

Nano-electronics research center imec said it had achieved a record cell conversion efficiency of 22.5% for its large area (6-inch) n-type PERT (passivated emitter, rear totally diffused) Cz-Si solar cell. 

Researchers at imec noted that the new record was the highest efficiency achieved for a two-side-contacted solar cell which had been processed on six inch commercially available n-type Cz-Si wafers, without the use of passivated contacts. The record efficiency was said to have been calibrated at ISE CalLab. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The cells feature Ni/Cu/Ag front contacts, rear local contacts, a diffused front surface field (FSF) and a rear emitter. The cells achieved an independently confirmed open-circuit voltage (Voc) of 689mV, a short-circuit current (Jsc) of 40.3 mA/cm2, and 80.9 percent fill factor (FF). 

Filip Duerinckx, manager of imec’s n-PERT technology platform, said “This new record is a testimony of our technology leadership in developing next-generation silicon photovoltaics solutions. We have a strong commitment to continue increasing the efficiency our n-PERT technology, and are very optimistic that these achievements will further pave the way to industrialization in the near term.”

The research centre noted that it was exploring material and architectural improvements to extend its n-PERT solar cell concept for commercial applications. 

This includes n-PERT solar cells with a rear side p-type emitter using epitaxial growth or heterojunction processes that are hoped to provide conversion efficiencies approaching 22%. 

Demand for N-type silicon solar cells is expected to increase in coming years as wafer costs reduce and the inherent higher quality silicon provides for higher overall conversion efficiencies than P-type multicrystalline wafers. Higher resistance to LID (light-induced degradation) and higher tolerance to common metal impurities offer improved performance and lower overall lifetime degradation. 

Read Next

November 19, 2025
Recurrent Energy has sold its 275MWdc Gunning hybrid solar-plus-storage project in New South Wales, Australia.
November 18, 2025
TOPCon solar modules show signs of accelerated degradation, which undermines the long warranties promised by many manufacturers, according to new findings from German researchers.
November 18, 2025
Holosolis has secured €220 million (US$255.2 million) to support its construction of a module factory in France with a total capacity of 5GW.
November 18, 2025
Tata Power Renewable Energy has commissioned a 300MW solar PV project for Indian hydropower company NHPC in Rajasthan. 
November 18, 2025
JinkoSolar shipped just over 20GW of solar PV modules in the third quarter of this year, down sequentially from the previous quarter.
Premium
November 18, 2025
PV Talk: George Touloupas of Intertek CEA explains how the regulatory environment is ratcheting up for the solar supply chain.

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA