Intersolar 2015: Imec tops n-PERT cell efficiency of 22.5%

June 10, 2015
Facebook
Twitter
LinkedIn
Reddit
Email

Nano-electronics research center imec said it had achieved a record cell conversion efficiency of 22.5% for its large area (6-inch) n-type PERT (passivated emitter, rear totally diffused) Cz-Si solar cell. 

Researchers at imec noted that the new record was the highest efficiency achieved for a two-side-contacted solar cell which had been processed on six inch commercially available n-type Cz-Si wafers, without the use of passivated contacts. The record efficiency was said to have been calibrated at ISE CalLab. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The cells feature Ni/Cu/Ag front contacts, rear local contacts, a diffused front surface field (FSF) and a rear emitter. The cells achieved an independently confirmed open-circuit voltage (Voc) of 689mV, a short-circuit current (Jsc) of 40.3 mA/cm2, and 80.9 percent fill factor (FF). 

Filip Duerinckx, manager of imec’s n-PERT technology platform, said “This new record is a testimony of our technology leadership in developing next-generation silicon photovoltaics solutions. We have a strong commitment to continue increasing the efficiency our n-PERT technology, and are very optimistic that these achievements will further pave the way to industrialization in the near term.”

The research centre noted that it was exploring material and architectural improvements to extend its n-PERT solar cell concept for commercial applications. 

This includes n-PERT solar cells with a rear side p-type emitter using epitaxial growth or heterojunction processes that are hoped to provide conversion efficiencies approaching 22%. 

Demand for N-type silicon solar cells is expected to increase in coming years as wafer costs reduce and the inherent higher quality silicon provides for higher overall conversion efficiencies than P-type multicrystalline wafers. Higher resistance to LID (light-induced degradation) and higher tolerance to common metal impurities offer improved performance and lower overall lifetime degradation. 

Read Next

December 12, 2025
A roundup of three solar PV project financing stories from Australia, Texas and California, with updates from Potentia Energy, Origis Energy and Baywa r.e.  
December 12, 2025
A round-up of news coming from Europe, with IPP Encavis acquiring a 265MW solar PV portfolio in Italy, Iberdrola starting construction on 366MW of solar PV in its home country and IPP Sonnedix signing a renewables supply agreement with a subsidiary of Volkswagen in Spain.
December 12, 2025
India’s flagship solar PV manufacturing incentive has driven “robust growth” in the sector since its launch, but hurdles remain to building a complete domestic supply chain.
December 12, 2025
Solar PV companies in the US are not waiting for guidance from the US Departments of the Treasury or Energy to act regarding Foreign Entity of Concern (FEOC), according to a survey conducted by Crux.
December 12, 2025
US solar PV module prices have stabilised at just over US$0.28/W in the three months to November 2025, according to Anza.

Upcoming Events

Upcoming Webinars
December 17, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA