Intersolar 2015: Imec tops n-PERT cell efficiency of 22.5%

June 10, 2015
Facebook
Twitter
LinkedIn
Reddit
Email

Nano-electronics research center imec said it had achieved a record cell conversion efficiency of 22.5% for its large area (6-inch) n-type PERT (passivated emitter, rear totally diffused) Cz-Si solar cell. 

Researchers at imec noted that the new record was the highest efficiency achieved for a two-side-contacted solar cell which had been processed on six inch commercially available n-type Cz-Si wafers, without the use of passivated contacts. The record efficiency was said to have been calibrated at ISE CalLab. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The cells feature Ni/Cu/Ag front contacts, rear local contacts, a diffused front surface field (FSF) and a rear emitter. The cells achieved an independently confirmed open-circuit voltage (Voc) of 689mV, a short-circuit current (Jsc) of 40.3 mA/cm2, and 80.9 percent fill factor (FF). 

Filip Duerinckx, manager of imec’s n-PERT technology platform, said “This new record is a testimony of our technology leadership in developing next-generation silicon photovoltaics solutions. We have a strong commitment to continue increasing the efficiency our n-PERT technology, and are very optimistic that these achievements will further pave the way to industrialization in the near term.”

The research centre noted that it was exploring material and architectural improvements to extend its n-PERT solar cell concept for commercial applications. 

This includes n-PERT solar cells with a rear side p-type emitter using epitaxial growth or heterojunction processes that are hoped to provide conversion efficiencies approaching 22%. 

Demand for N-type silicon solar cells is expected to increase in coming years as wafer costs reduce and the inherent higher quality silicon provides for higher overall conversion efficiencies than P-type multicrystalline wafers. Higher resistance to LID (light-induced degradation) and higher tolerance to common metal impurities offer improved performance and lower overall lifetime degradation. 

Read Next

Premium
February 11, 2026
PV Talk: Wood Mackenzie’s Yana Hryshko argues that MENA is emerging as a solar manufacturing hub, driven, in part, by Chinese partnerships.
February 11, 2026
The National Laboratory of the Rockies (NLR), previously known as the National Renewable Energy Lab, has laid off 134 employees.
February 11, 2026
China expects to add 180-240GW of new solar PV capacity in 2026, according to the latest figures from the CPIA.
February 11, 2026
India’s MNREA has released the fourth revision of its ALMM II for solar cells, increasing the total enlisted manufacturing capacity to 26GW. 
February 11, 2026
A round-up of a number of European project stories from this week, including METLEN, European Energy and TSE.
February 11, 2026
The UK government's Allocation round 7a (AR7a) of the Contracts for Difference (CfD) auction has awarded a record 4.9GW of solar PV.

Upcoming Events

Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA