MoNa sputtering targets from Plansee offer higher CIGS cell efficiencies

February 9, 2012
Facebook
Twitter
LinkedIn
Reddit
Email

Plansee High Performance Materials has added MoNa sputtering targets with high purity and a uniform and fine-grained microstructure to its product offering. Tests in cooperation with the Swiss EMPA institute have claimed the MoNa targets to be superior to alternative targets. Using Na-doped molybdenum layers, the efficiency of CIGS solar cells are said to have been significantly improved.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The manufacturing cost reduction in terms of USD per watt is one of the most important challenges for CIGS solar module producers. Especially the sputtering process – one of the most important techniques for material deposition in CIGS – plays a crucial role in efficiency enhancement. In contrast to the high lateral homogeneity of thin films deposited by sputtering, a sputtered target generally has an erosion profile which is not homogeneous – a result of different plasma densities. As a consequence, the targets have to be replaced even if there is sufficient material on most of the target area. To overcome this limitation, targets with varying outer diameter known as ‘dogbone’ for rotary targets or thickness is a solution to extend the target lifetime and increase the target exchange interval.

Solution

Changing the sputtering system from planar to rotary targets increases the target utilization from about 30% to 75%, which saves expensive raw material. Depositing molybdenum back contact by monolithic molybdenum rotary targets – which are completely made of molybdenum – gives additional benefits: The expensive bonding of the molybdenum material on a stainless steel backing tube is not required. In addition, a higher sputtering power of up to 30 kW/m can be applied. This creates a very high heat load which cannot be accommodated by bonded-type targets: Indium is used as bonding material which melts at 156 °C, thus the risk of de-bonding is eliminated with monolithic targets. A higher sputtering power results in a higher deposition rate and improved thin film properties, e.g. higher electrical conductivity.

Applications

CIGS thin film module manufacturing.

Platform

The MoNa, monolithic molybdenum target and the dogbone targets are made to customer specifications. With MoNa the company offers a new material alloy that increases conversion efficiencies.

Availability

Currently available.
 

Read Next

November 25, 2025
PowerField has completed construction of seven solar PV projects in the Netherlands with a combined capacity of 170MW.
November 25, 2025
Renewables developer Plenitude will deploy perovskite-silicon tandem solar PV modules at a pilot solar project in the US.
November 25, 2025
Zelestra has signed a PPA with technology giant Microsoft to sell power generated at a 95.7MW solar PV portfolio.
November 25, 2025
ACME Platinum has signed a PPA with the Solar Energy Corporation of India (SECI) for a 200MW solar-plus storage project in India.
November 25, 2025
Delegates at this year’s COP30 summit agreed to a “global mutirão”, meaning “collective efforts”, to tackle climate change, but the final text of the summit includes no framework for reducing fossil fuel production.
November 25, 2025
Renewable energy developer Genesis Energy has reached a final investment decision (FID) on a 136MW solar PV project in New Zealand.

Upcoming Events

Solar Media Events
December 2, 2025
Málaga, Spain
Upcoming Webinars
December 4, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA