N-type silicon solar cell technology: ready for take off?

By Dr. Joris Libal & Dr. Radovan Kopecek
Share on facebook
Share on twitter
Share on linkedin
Share on reddit
Share on email
N-type solar cell. Image: IMEC.

Why are the two c-Si solar cell concepts with the highest efficiency, IBC from SunPower and HIT from Panasonic, based on n-type technology and out there for a very long time? Why is almost 90% of PV production still based on p-type c-Si technology? Will that change in the future? The latter has been one of the most-discussed questions in c-Si PV for a few years now. From 23 March the SiliconPV conference and more specifically the 5th nPV workshop and HERCULES workshop will address this topic, showing improvements in p- and n-type Si technologies.

The reason why p-type technology is dominant today has definitely mostly a historical background. The history and past status was described in the 21st edition of Photovoltaics International in 2013. So we are very confident, also in agreement with the ITRPV consortium, that n-type technology will gain more and more importance in the share of technologies, as many companies are upgrading their p-type or n-type cell lines and even investing in new capacities, as summarised at the end of this blog post. As depicted in Figure 1 the PV world in future will be divided into high-performance (HP) p-type mc-Si cells with >22% efficiencies and n-type cells with >25% efficiencies. 

Fig. 1: Relative market shares of casted and mono c-Si. Source: http://www.itrpv.net.


The fact that the two cell technologies featuring the highest efficiencies in industrial production are based on n-type Cz-Si wafer is a striking demonstration of why n-type wafers are the most suitable material for high-efficiency solar cells. Going more into details, there are some physical reasons for the superiority of n-type versus p-type, the most important are:

  • due to absence of boron, there is no light induced degradation (LID) occurring in p-type Si wafers, due to boron-oxygen complexes
  • as n-type Si is less sensitive to prominent metallic impurities, in general the minority carrier diffusion lengths in n-type Cz-Si are significantly higher compared to p-type Cz-Si
  • n-type Si is less prone to degradation during high temperature processes such as B-diffusion.

Accordingly it can be assumed that, in order to guarantee an electrical quality in the wafers that is sufficiently high for the fabrication of solar cells with a cell efficiency of over 20% (in particular regarding the minority charge carrier diffusion length), ‘average’ to ‘high’ quality wafers are required for p-type, while for n-type ‘low’ to ‘average’ should be sufficient. Taking for granted that the wafer prices indicated in Figure 2 are related to the wafer quality, currently, the wafers for such solar cells should be priced in the range of US$1.08-1.22 in the case of p-type, while suitable n-type wafers have a price ranging from US$1.25-1.30.

Fig. 2: Updated market prices (USD/wafer) for p- and n-type Cz-Si wafers (according to http://www.pvinsights.com:

Accordingly, depending on the individual supply situation, n-type wafers can be up to 20% more expensive than p-type wafers. However, experts in industrial Cz-Si crystal growth agree that – apart from a wider resistivity distribution over one crystal – there is no technological difference between the growths of p- and n-type crystals that would explain an increased manufacturing cost for n-type wafers. Therefore it all comes down to economy of scale: currently, more than 80% of the worldwide Cz-Si crystal production capacity for PV is dedicated to p-type. According to the expectations of the latest ITRPV (see Figure 1) parity between p- and n-type productions will be nearly achieved by 2018. Then, at the latest, all cell manufacturers should have access to n-type wafers at the same price as p-type wafers. Vertical integration into crystal growth and wafering would be a way for cell manufacturers to achieve the breakeven earlier.

The growing market share of n-type and the availability of n-type modules at standard price levels will also result in a higher awareness among end-users regarding the LID issue of p-type modules, highlighting another benefit of n-type in terms of levelised cost of energy (LCOE).

One of the possible solutions for avoiding LID in p-type, apart from using more costly Cz-Si with low oxygen content, is the permanent deactivation of the B-O-complexes by a combined heat-illumination treatment. Equipment that is capable of performing this treatment in a reliable way with industrial throughput is currently under development at some equipment suppliers, such as Centrotherm.

In conclusion, considering that cell concepts enabling efficiencies significantly exceeding 21% will require boron diffusion, the lower degradation of n-type Si during high temperature processes will make it the predominant wafer material for industrial solar cell manufacturing in the mid-term future.


The advantages and drawbacks of different diffusion technologies were already discussed in our last article for Photovoltaics International, cited above. Nothing much has changed since then – the B-diffusion has to be performed fast, cost-effectively and homogeneously which is not that easy. Centrotherm is focusing on low-pressure BBr3 diffusions and Sandvik has designed a BBr3 boron deposition process which has a unique gas flow configuration. Tempress and Semco also have solutions for tube furnace BBr3 and BCl3 diffusions respectively, while Schmid has also been very successful with its APCVD B-diffusion equipment where the diffusions are done from one-sided deposition of doped oxides. AMAT, Kingstone, Intevac and others are offering solutions for ion-implantation, however not all of them for boron.

The challenge after the process of a good B-diffused surface is to clean it properly, passivate it effectively and metallise without high losses in Voc. There are many solutions for special applications which are provided by RENA (cleaning, metallisation), Schmid (cleaning, metallisation), SINGULUS (cleaning, passivation, metallisation) centrotherm (passivation), R&R (passivation), Levitech (passivation), Solaytech (passivation), Dupont (metallisation), Hareaus (metallisation) and many others. In order to reach efficiencies in production exceeding 21-22%, the Al spiking has to be eliminated in future which leads to limited Voc of about 655mV. Also the edge isolation is not trivial on n-type solar cell processing and has to be implemented thoroughly into the cell process.                 


Increasing significantly the cell efficiencies compared to standard Al-BSF cell technology requires the introduction of additional process steps as discussed before. Consequently, advanced cell concepts such as PERC, MWT and PERT come with a higher cost of ownership (COO) in US$/cell. HIT and today's industrially implemented IBC-cell concepts feature in addition more complex (i.e. more expensive) process technologies.

As mentioned above, n-type concepts (n-PERT, HIT, IBC) have been – up to now – also disadvantaged by a higher wafer price. However, depending on the achievable module power and on the module manufacturing cost, the COO in US$/Wp at module level can still be economically interesting. This applies even more, if one considers the parameter that determines the return on investment of each PV system, irrespective of its exact type and size: the LCOE in US$/kWh. When building a PV system with high efficiency modules, less cabling, mounting structures, land, labour and other elements are required – in short: the related balance of system (BOS) cost, and consequently the total cost of the installed system, is reduced. A lower cost of the PV system (US$/Wp) results in a lower LCOE (US$/kWh).

In this respect, many advanced c-Si solar cell technologies with boron back surface field or emitter are inherently bifacial or can be easily made bifacial. Bifaciality reduces the LCOE even further, as it acts just like an “efficiency booster”: as illustrated in Figure 3, assuming a moderate 15% bifacial gain (increase in kWh/kWp(front)), a bifacial BiSoN module with 280Wp (front Pmpp) features the same energy yield as a 320Wp monofacial module while featuring a COO that is in the range of standard mc-Si modules with a Pmpp of 250 Wp.

Fig. 3: Market price vs. Pmpp of 60-cells modules for various industrially implemented cell technologies compared to the calculated Coo for BiSoN (n-PERT) and ZEBRA (n-IBC) technology. Coo calculation based on 1.0 USD/wafer for p-type Cz-Si and 1.3 USD/wafer for n-type Cz-Si.

Newcomer companies and new R&D Highlights 

Many companies have been involved in n-type cell and module production for many years such as SunPower, Panasonic, Yingli, PVGS, Neosolarpower and LG. Newcomers such as First Solar, Silevo, Mission Solar (Nexolon), SSNED, Motech and MegaCell are following quickly. Many of them will present their progress at the nPV workshop, showing >20% efficient n-type cell concepts that can be also used in glass-glass or glass-transparent foil modules, benefiting from the bifacial character of the cells.        

Many institutes are developing similar cell concepts on large six-inch wafers (some still having some processes which are hard to transfer to production) and reaching efficiencies >22% for a simple n-type PERT structure (IMEC) or >22% for an IBC structure (ISFH). Results from IMEC´s, FhG’s, ISE´s and ISFH´s n-type developments are summarised in the 27th edition of Photovoltaics International. All these results will be also shown in presentations at the nPV workshop. In addition, ISC Konstanz together with MegaCell will show BiSoN (BIfacial Solar cell On N-type) cells in production and the newest improvements to the ZEBRA (diffused n-type IBC) technology with >21.5% efficiency (both concepts depicted in Figure 4). ECN will present their upgrade of nPASHA – the n-type MWT cell with >21% efficiency. Last but not least INES and EPFL/CSEM will summarise their excellent results on heterojunction cell and module concepts.

Fig. 4: PERT (BiSoN) solar cell and IBC (ZEBRA) solar cell of ISC Konstanz.

In summary we can say that n-type is on its way to rapidly taking off. The cell concepts have been out there for a long time, the wafers are constantly getting cheaper, the paste manufacturers are improving their n-type products quickly and the awareness of kWh thinking instead of Wp mentality is growing. So the ramp for take-off is prepared – and the n-type rocket is now starting its engines.

18 October 2021
Intersolar South America, South America’s largest exhibition and conference for the solar industry, takes place at the Expo Center Norte in São Paulo, Brazil on October 18–20, 2021, and has a focus on the areas of photovoltaics, PV production and solar thermal technologies. At the accompanying Intersolar South America Conference, renowned experts shed light on hot topics in the solar industry.
19 October 2021
This year’s EV World Congress will hold a special role, not only as the first live EverythingEV event in over a year – a chance to renew your connections and re-engage with the EV sector face to face – but also as a chance to share insight and inspiration as world starts to look towards move on post COVID towards hitting ambitious decarbonisation goals in 2030 and beyond. As ever, we will be bringing world leading organisations, cities, and technology providers to the UK to inspire EV innovators, and delve into the challenges facing the sector as the UK looks to revolutionise road transport.
20 October 2021
Utility-scale solar is evolving, shaped by higher power modules and demand for increasingly lower levelised cost of electricity (LCOE). Those trends are also changing project requirements elsewhere, with inverters capable of delivering high power density and power capacity in strong demand. In this webinar, FIMER will detail how its innovative high-power, multi-MPPT string inverter and modular conversion solution can both meet those demands and transform the utility-scale solar sector for the better.
20 October 2021
The race is on but we need to sprint… With global climate talks fast approaching and time running out to prevent the most disastrous impacts of climate change, now is the time to act. The Summit will explore the opportunities that emerge from taking action on climate change and provide a clear pathway forward for governments, citizens and companies. Taking place just 10 days before the G20 meeting in Rome, on 30-31 of October, and in the lead up to the critical COP26 meeting in Glasgow from 31 October–12 November, this event will be instrumental in influencing ambitious global action.
10 November 2021
The solar tracker market continues to mature at breakneck speed, with designs and component selections becoming ever-more complex in the pursuit of better project economics. But a more simplistic design could deliver a triple benefit of lower Capex, EPC and Opex costs. This webinar will set out the ideal single axis tracker design for utility-scale solar farms. The design leapfrogs from decades of experience, with a comprehensive understanding and attention to the three cost structures of Capex, EPC and Opx. Sun and Steel Solar has prototyped a single axis tracker designed to deliver up to US$0.03/W in real savings compared to existing single axis trackers on the market. That’s US$30 million for every gigawatt deployed.
15 November 2021
The 10th edition of the famous Metallization and Interconnection Workshop, MIW2021, will take place in the Thor Central venue in Genk, Belgium, on Monday, November 15, and Tuesday, November 16, 2021 as a face-to-face meeting. We are longing for direct exchange of knowledge and ideas after a long time. Hopefully you can be part of it! But of course, the organizors will keep an eye on the evolution of the Covid pandemic. It will be assess carefully, whether the workshop can be held without major risks or excessive restrictions. We are looking forward to exciting talks, discussions and meetings and to welcoming you in Genk!

Read Next

October 15, 2021
US residential solar financier GoodLeap has raised US$800 million to expand into the broader market for sustainable home improvement, other carbon-reducing products and later commercial offerings and electric vehicles (EVs).
October 15, 2021
Doral Renewables has broken ground on the 1.65GWdc Mammoth Solar project in Indiana, set to be the US’ largest solar farm once complete.
October 15, 2021
European renewables investment management firm Greencoat Capital has confirmed its entry to the US renewables market and is plotting to invest up to US$5 billion over the next five years.
October 15, 2021
The European Commission (EC) has urged member states to accelerate solar deployment in order to tackle Europe’s rising electricity prices and has released a ‘toolbox’ to address the short-term impact of prices and strengthen resilience against future shocks
October 14, 2021
Europe’s most competitive renewable power purchase agreement (PPA) offers rose 8% quarter-on-quarter as Europe’s worsening energy crisis bites, according to US firm LevelTen Energy’s Q3 2021 PPA Price Index report.
October 14, 2021
JinkoSolar has laid claim to a new n-type monocrystalline silicon solar cell conversion efficiency record, taking that efficiency rating to 25.4%.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 19, 2021
Upcoming Webinars
November 10, 2021
8am (PST) | 5pm (CET)
Solar Media Events
December 1, 2021