Natcore researchers demonstrate gains in LPD-applied antireflective coating for texturized PV cells

May 6, 2011
Facebook
Twitter
LinkedIn
Reddit
Email

Natcore Technology scientists working at Ohio State University have continued to make progress on the development of the company's liquid phase deposition (LPD) process, demonstrating it can be used to apply an antireflective coating to textured solar cells as well as standard planar cells. The company said this could help open the door for the industry to achieve even further wafer thickness reductions by eliminating the thermal vacuum AR coating process.

Once solar cells are texturized, they are put through the remaining standard cell processing steps, which include adding the AR coating and the contacts. A growing problem, however, is that the conventional coating process requires the cells to travel through a vacuum furnace. As the wafers get thinner, the existing AR process causes them to warp, reducing the yield from the production process.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Measurements made at NASA Glenn Research Center in Cleveland show that the reflectance from texturized wafers coated with Natcore's LPD AR coating is reduced to well below 2% over the entire absorption band of silicon cells–a two-thirds reduction from the typical reflectance achieved by standard industry practices and a result that would be accompanied by an increase in cell efficiency.

(For solar cells, the optimum reflectance is zero; a typical industry reflectance is about 6%. Reflectance is the proportion of light hitting a surface that is reflected from it.)

“The processing steps for achieving this outstanding result will be implemented in the intelligent processing tool we're building in Silicon Valley,” says Brien Lundin, chairman of Natcore. “We've had strong interest in this technology from several solar cell companies in China. We'll send a number of coated wafers for each of them to process into finished solar cells before we take orders for the industrial version of our intelligent processing tool.”

Natcore also recently announced its choice of the Kodak research labs in Rochester, NY, as the location of its new R&D center.

Read Next

February 10, 2026
Energy platform Revera Energy has completed an expanded US$150 million credit facility for its UK and Australian portfolio.
February 10, 2026
FinDev Canada has announced a US$56 million loan to support the development of project Illa, which will be the largest in Peru.
February 10, 2026
Rewa Ultra Mega Solar Limited (RUMSL) has extended a Letter of Award (LOA) to Ceigall India and ACME Solar to develop 220MW solar-plus-storage in Morena, Madhya Pradesh. 
Premium
February 10, 2026
Market dynamics and growing concerns over Europe’s grid bottlenecks were key topics at this year’s Solar Finance & Investment Europe summit.
February 10, 2026
Boviet Solar has affirmed its commitment to US solar PV manufacturing despite plans by its parent company to divest its ownership.
February 10, 2026
WGEH has signed a Feasibility Phase Agreement to advance Stage 1 development of its 70GW renewable energy project in Western Australia.

Upcoming Events

Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA