Natcore researchers demonstrate gains in LPD-applied antireflective coating for texturized PV cells

May 6, 2011
Facebook
Twitter
LinkedIn
Reddit
Email

Natcore Technology scientists working at Ohio State University have continued to make progress on the development of the company's liquid phase deposition (LPD) process, demonstrating it can be used to apply an antireflective coating to textured solar cells as well as standard planar cells. The company said this could help open the door for the industry to achieve even further wafer thickness reductions by eliminating the thermal vacuum AR coating process.

Once solar cells are texturized, they are put through the remaining standard cell processing steps, which include adding the AR coating and the contacts. A growing problem, however, is that the conventional coating process requires the cells to travel through a vacuum furnace. As the wafers get thinner, the existing AR process causes them to warp, reducing the yield from the production process.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Measurements made at NASA Glenn Research Center in Cleveland show that the reflectance from texturized wafers coated with Natcore's LPD AR coating is reduced to well below 2% over the entire absorption band of silicon cells–a two-thirds reduction from the typical reflectance achieved by standard industry practices and a result that would be accompanied by an increase in cell efficiency.

(For solar cells, the optimum reflectance is zero; a typical industry reflectance is about 6%. Reflectance is the proportion of light hitting a surface that is reflected from it.)

“The processing steps for achieving this outstanding result will be implemented in the intelligent processing tool we're building in Silicon Valley,” says Brien Lundin, chairman of Natcore. “We've had strong interest in this technology from several solar cell companies in China. We'll send a number of coated wafers for each of them to process into finished solar cells before we take orders for the industrial version of our intelligent processing tool.”

Natcore also recently announced its choice of the Kodak research labs in Rochester, NY, as the location of its new R&D center.

Read Next

November 21, 2025
BNZ has started commercial operations at a portfolio of solar PV projects in Spain with a combined capacity of 150MW.
November 21, 2025
Fotowatio Renewable Ventures (FRV) Australia has submitted an environmental referral for a 200MW solar PV project paired with a 550MW/2,200MWh battery energy storage system (BESS) in New South Wales.
November 21, 2025
JUWI, a wholly-owned subsidiary of MVV Energie AG, has completed the sale of a 156MW solar PV portfolio in Greece to Mirova, an affiliate of Natixis Investment Managers specialising in sustainable investing.
Premium
November 21, 2025
A modestly sized solar PV project in central Germany might have just ushered in a new era of renewables’ relationship with the grid.
November 21, 2025
CPS Energy has issued a request for proposals (RFP) to acquire 600MW of new solar capacity through power purchase agreements (PPA).
November 21, 2025
ib vogt has entered a strategic partnership with Ingka Investments for a 210MW solar project in Rajasthan, India.

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA