New Product: Saflex develops ultra-thin reflective solar encapsulant with Oerlikon Solar

Facebook
Twitter
LinkedIn
Reddit
Email

Product Briefing Outline: Saflex, a business unit of Solutia, has launched the Saflex Radiant White PA27 encapsulant, which was developed in collaboration with Oerlikon Solar to improve conversion efficiencies of its tandem-junction ‘micromorph’ thin-film module technology. Saflex PA27 is manufactured to an ultra-thin thickness of 0.51mm compared to standard PVB encapsulants and is the first ultra-thin reflective PVB encapsulant available for use in the solar market.

Problem: Traditionally, the role of encapsulants is to ensure long-term durability and performance of solar panels by protecting critical electrical components from rain, heat, and humidity; however, the material is expensive and passive in nature in relation to improving cell or module efficiencies. Currently, most solar modules utilize a reflective metallic stack or reflective white coat to redirect light back through the film for improved energy conversion, adding to the process steps and manufacturing costs.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Solution: Saflex PA27 is manufactured to an ultra-thin thickness of 0.51mm compared to standard encapsulants, which typically range from 0.76mm to 1.14mm in thickness, thus resulting in a material reduction of 33% to 55%, respectively. It incorporates the reflective benefits provided by more traditional reflective material layers into the encapsulant, giving module manufacturers a cost-effective solution to increase solar panel efficiency and simplify the manufacturing process. Saflex PA27 also has improved electrical insulation with a two-order-of-magnitude increase in bulk resistivity. This equates to significant improvements in the wet insulation resistance of the module, leading to a reduction in current losses to ground and an increase in the power collected from each module. Test results confirm Saflex 3G PVB to be less moisture sensitive, which enables high adhesion especially at the edges, even as environmental conditions, including humidity, fluctuate.

Applications: Thin-film modules.

Platform: Saflex PA27 is based on proven 3G PVB chemistry, which was first introduced in 1997. PA27 is RoHS approved, both IEC certification and UL testing pending.

Availability: April 2010 onwards.

Read Next

July 14, 2025
ACWA Power has signed power purchase agreements (PPAs) with Saudi Power Procurement Company (SPPC) for five solar PV projects in the country.
July 14, 2025
Elements Green has secured €80 million (US$93.5 million) in financing from Danish investment firm Copenhagen Infrastructure Partners (CIP).
July 14, 2025
Solar and storage developer MN8 Energy has raised US$575 million to refinance three PV projects in North Carolina, Kentucky and Illinois.
July 14, 2025
OpenSolar has launched a new model to help US rooftop solar installers reduce costs and thrive despite the loss of the 30% IRA tax credit.
July 14, 2025
Analyst Wood Mackenzie has forecast that solar PV and wind installations in the US will be 100GW lower than expected between 2025 and 2030 with the removal of Inflation Reduction Act (IRA) incentives.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico
Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 22, 2025
Bilbao, Spain
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK