New Product: Schmid’s Tabber Stringer provides high precision combined with minimum handling

January 27, 2010
Facebook
Twitter
LinkedIn
Reddit
Email

Product Briefing Outline: The Schmid Group has launched a new Tabber Stringer created in cooperation with the Wolf company. The system is designed to offer high precision performance combined with minimum handling and a soldering method that is claimed to reduce the risk of cell damage during processing and handling.

Problem: Tabbing and stringing is carried out in two steps whereby minutely exact positioning of the solder ribbons on the rotating table of the tabbing unit and highest repetition precision are required.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution: The accuracy of cell positioning along the linear axis in the stringer unit allows production of one-hundred percent straight and regular strings for the first time ever.
The use of different stations for quality control prior to and during the process and the automatic rejection of defect cells ensure a constant level of high quality while preventing the production of faulty strings. The combination of soldering processes is a new feature of this application. Contact-free resistance heating is used to bond the ribbons to the cells. The uniform temperature profile generated along the entire solder ribbon–busbar connection during this process creates a homogenous, high quality solder result. The tabbed cells are then connected in series to create strings, again by means of non-contact laser beam soldering. Both these soldering methods are lead-free and are characterised by highest-level accuracy, repeatability and low maintenance requirements.

Applications: Crystalline solar cell tabbing and stringing.

Platform: The new Tabber Stringer strong output performance (1,200 cells per hour) with a minimum breakage rate (< 0.3 %) and space-saving design. An upgrade from 25MW to 50MW can be accomplished at low cost and little effort and does not require additional space. It incorporates the possibility of processing very thin cells from 130µm. The systems has a space-saving foot-print of 3.3 m².

Availability: Schmid will deliver the first Tabber Stringer to customers in January 2010.

Read Next

December 12, 2025
A roundup of three solar PV project financing stories from Australia, Texas and California, with updates from Potentia Energy, Origis Energy and Baywa r.e.  
December 12, 2025
A round-up of news coming from Europe, with IPP Encavis acquiring a 265MW solar PV portfolio in Italy, Iberdrola starting construction on 366MW of solar PV in its home country and IPP Sonnedix signing a renewables supply agreement with a subsidiary of Volkswagen in Spain.
December 12, 2025
India’s flagship solar PV manufacturing incentive has driven “robust growth” in the sector since its launch, but hurdles remain to building a complete domestic supply chain.
December 12, 2025
Solar PV companies in the US are not waiting for guidance from the US Departments of the Treasury or Energy to act regarding Foreign Entity of Concern (FEOC), according to a survey conducted by Crux.
December 12, 2025
US solar PV module prices have stabilised at just over US$0.28/W in the three months to November 2025, according to Anza.
December 11, 2025
The Chinese polysilicon industry has emerged with a new "inventory platform" with a RMB30 billion capital aimed at increasing prices.

Upcoming Events

Upcoming Webinars
December 17, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA