NREL study of Alta Devices module found it was five times less sensitive to increased temperature

June 20, 2013
Facebook
Twitter
LinkedIn
Reddit
Email

In a paper presented at the IEEE PVSC (Photovoltaic Specialists Conference) being held this week, an NREL-supervised test showed that US-based start-up, Alta Devices modules lost little efficiency at elevated temperatures, unlike conventional modules.

According to Sarah Kurtz, PhD, Principal Scientist, Reliability Group Manager of NREL: “To truly understand how much energy a particular solar technology will generate, it’s critical to know how it performs in real-world conditions. Alta’s ability to retain its efficiency advantage at high temperature is an important benefit. For years, the industry has desired a very efficient solar cell that could be built into the roof of a car or building without paying the performance penalty associated with a hot roof. Alta’s technology provides a fresh approach to these attractive applications by naturally rejecting heat and being less sensitive to high temperatures.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The tests were conducted at NREL’s outdoor testing facility in Golden, Colorado, measuring energy and operating temperatures over a nine-week period.

The result was that the Alta Devices module operated cooler than conventional modules (up to 10° Celsius cooler when the sun was brightest) and the module was about five times less sensitive to increased temperature. The Alta module actually showed higher efficiencies on hot days over cold days.

In a simulation model using measured temperature coefficients (neglecting spectral effects), compared to a silicon module with the same power rating, the Alta module was predicted to generate 8% ±2% more energy per year in Phoenix, Arizona.

Alta Devices president and CEO, Chris Norris said: “Our technology delivers tangible economic benefits to automobile manufacturers by helping them meet the latest CAFE standards while providing real-world benefits to the end users.”
 

Read Next

Premium
January 30, 2026
In an interview with PV Tech Premium, two UNSW researchers emphasise the need for enhanced UV testing for TOPCon solar cells.
January 29, 2026
Canadian renewables firm Westbridge Renewable Energy has received approval from the Alberta Utilities Commission (AUC) to build an up to 225MW solar-plus-storage plant in Alberta, Canada.
January 29, 2026
Enfinity has started commercial operations at a 33.8MW solar PV project, the first in a portfolio from which Microsoft will acquire power
January 29, 2026
The cost of Chinese solar module manufacturing will rise in the first half of 2026, though prices may fall again before the end of the year.
January 29, 2026
PV module defects are increasing as manufacturers struggle to achieve consistent quality through robust bill-of-material and process controls.
January 29, 2026
A Korean-led consortium including Hyundai Engineering has started construction at a 350MW solar PV plant in Dallas, Texas.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA