NREL study of Alta Devices module found it was five times less sensitive to increased temperature

June 20, 2013
Facebook
Twitter
LinkedIn
Reddit
Email

In a paper presented at the IEEE PVSC (Photovoltaic Specialists Conference) being held this week, an NREL-supervised test showed that US-based start-up, Alta Devices modules lost little efficiency at elevated temperatures, unlike conventional modules.

According to Sarah Kurtz, PhD, Principal Scientist, Reliability Group Manager of NREL: “To truly understand how much energy a particular solar technology will generate, it’s critical to know how it performs in real-world conditions. Alta’s ability to retain its efficiency advantage at high temperature is an important benefit. For years, the industry has desired a very efficient solar cell that could be built into the roof of a car or building without paying the performance penalty associated with a hot roof. Alta’s technology provides a fresh approach to these attractive applications by naturally rejecting heat and being less sensitive to high temperatures.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The tests were conducted at NREL’s outdoor testing facility in Golden, Colorado, measuring energy and operating temperatures over a nine-week period.

The result was that the Alta Devices module operated cooler than conventional modules (up to 10° Celsius cooler when the sun was brightest) and the module was about five times less sensitive to increased temperature. The Alta module actually showed higher efficiencies on hot days over cold days.

In a simulation model using measured temperature coefficients (neglecting spectral effects), compared to a silicon module with the same power rating, the Alta module was predicted to generate 8% ±2% more energy per year in Phoenix, Arizona.

Alta Devices president and CEO, Chris Norris said: “Our technology delivers tangible economic benefits to automobile manufacturers by helping them meet the latest CAFE standards while providing real-world benefits to the end users.”
 

Read Next

Premium
November 7, 2025
The increasing technical complexity of the renewable energy space has increased the demands on capital raising for those in the sector.
November 7, 2025
JA Solar has signed a module supply agreement with EPC contractor Larsen & Toubro (L&T) for two utility-scale projects in Uzbekistan. 
November 7, 2025
Saatvik Green Energy, through its subsidiary Saatvik Solar Industries, secured solar PV module orders worth INR2.99 billion (US$33.7 million). 
November 7, 2025
The US Geological Survey (USGS) has released the 2025 List of Critical Minerals, which includes silicon and tellurium.
November 7, 2025
Members of the European Parliament are urging the European Commission to restrict Chinese solar inverter manufacturers’ access to the bloc’s energy infrastructure, due to cybersecurity concerns.
November 7, 2025
Renewables asset fund Alantra Solar has secured €355 million to support the development and construction of five solar PV projects in Italy.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal