GTAT ‘Merlin’ metallisation and interconnect technology reduces silver paste needs by 80%

Facebook
Twitter
LinkedIn
Reddit
Email

GT Advanced Technologies (GTAT) has announced an innovative cell metallisation and interconnect technology, dubbed ‘Merlin’ that is expected to provide substantial savings in both the manufacture and installation of solar modules. A key component of the new technology includes a flexible grid that replaces conventional two and three silver bus bars, while significantly reducing solver paste consumption.

Problem

According to TUV Rheinland PTL, a number of key issues have been identified, including solder bond failures, hot spots and ribbon-to-ribbon solder bond failures in conventional cell stringing processes for two and there bus bar configured cells. Cell manufacturers continue to focus on silver paste cost reduction strategies including the need to reduce consumption, while boosting cell conversion efficiencies.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

The novel attributes of Merlin technology are expected to significantly reduce the amount of expensive silver paste consumed by a cliamed 80%, while improving panel efficiency and reducing module costs by a claimed 10% overall. The resulting modules are expected to be more reliable and durable and enable form factors that are lighter and easier to handle resulting in lower shipment and installations costs. GTAT’s patented Merlin technology easily integrates into existing cell and module manufacturing lines with simple changes to the screen used for patterning segmented fingers onto the solar cell. The segmented fingers are thinner and produce less shading than conventional fingers. The combination of the flexible grid and the segmented fingers results in lower resistive losses thereby increasing cell and module efficiency. Additionally, the on-cell and cell-to-cell interconnect features of the grid make the module substantially more resilient when subjected to temperature cycling and mechanical flexing. Merlin technology will enable customers to design highly reliable, lightweight, lower cost modules that are less expensive to install.

Applications

Solar cell metallisation and interconnect processes.

Platform

Merlin technology uses mature, proven manufacturing processes to produce the flexible grids.

Availability

March 2014 onwards

Read Next

October 3, 2025
Renewables developer Madison Energy Infrastructure has bought the US distributed generation assets of NextEra Energy Resources.
October 3, 2025
EDF Renewables and Enlight Renewable Energy have advanced solar-plus-storage projects in New Mexico and Arizona.
October 3, 2025
SunStrong Management has raised US$900 million to refinance a 'large portfolio' of residential solar assets developed by SunPower.
October 3, 2025
The US solar manufacturing industry is feeling bullish, despite the policy whiplash inflicted over the summer and the increased pressure on US solar supply chains.
October 3, 2025
Chinese government policies and supply-side production cuts will drive a significant increase in solar and storage component costs.
Premium
October 2, 2025
Australia's solar sector delivered a strong September performance in the National Electricity Market (NEM) as the country entered spring, with combined solar PV generation reaching 3,933GWh - a 17.83% increase from August's 3,338GWh.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 7, 2025
Manila, Philippines
Solar Media Events
October 7, 2025
San Francisco Bay Area, USA
Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland