RASIRC and Fraunhofer to present research paper on purified steam at IEEE conference

June 18, 2010
Facebook
Twitter
LinkedIn
Reddit
Email

During IEEE’s 35th PV specialist conference, RASIRC and the Fraunhofer Institute for Solar Energy Systems will present their research on using purified steam in the solar cell fabrication process with their paper, “Purified Steam for Industrial Thermal Oxidation Processes.” The paper compares purified steam with pryolytic team for silicon solar cell fabrication.

“Our research with Fraunhofer on using purified steam in the solar cell fabrication process has generated many positive and cost effective results,” said RASIRC founder and president Jeffrey Spiegelman. “This result reveals that purified steam enables the growth of high quality thermal oxides for the industrial fabrication of thermal oxide-passivated silicon solar cells.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Thermal silicon oxides are known to passivate silicon surfaces and have been used for the fabrication of efficient silicon solar cells. In most cases, the steam used for wet oxidation is produced by pyrolysis of highly purified hydrogen and oxygen gases. A new approach for direct steam delivery is to purify vaporized deionized water, wherein the process decreases costs for expendables, eliminates hydrogen gas from the facility and improves safety because of increased saturation with steam in the process atmosphere results in a higher cell growth rate during oxidation.

The research paper compares the two steam generation technologies, analyzes the physical properties of purified steam grown thermal oxides and implements a direct steam-based oxidation process into an industrial fabrication sequence for rear-surface passivated solar cells. Results have shown that by using industrial equipment for wet chemical cleaning and thermal oxidation, high effective carrier lifetimes of ~400 µs on 1 Ohmcm floatzone wafers for both steam sources were achieved.

Read Next

February 6, 2026
Chinese solar PV inverter and energy storage manufacturer Sungrow has expanded its manufacturing outreach with a new facility in southwestern Poland.
February 6, 2026
Chinese solar PV manufacturer Aiko Solar will license a raft of solar cell technology patents from Singapore-based manufacturer Maxeon.
February 6, 2026
Spanish independent power producer (IPP) has energised the fourth phase of its flagship solar-plus-storage project in Chile, Oasis de Atacama.
February 6, 2026
Lithuanian independent power producer (IPP) Green Genius has commenced operations of its 120.8MW solar project in Jekabpils region, Latvia.
February 6, 2026
GameChange Solar is to supply its Genius trackers for the 1.2GW Bisha Solar PV Independent Power Plant in Saudi Arabia.
February 6, 2026
The Australian government has launched a formal inquiry into the reuse and recycling of solar modules across the country.

Upcoming Events

Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA