RASIRC and Fraunhofer to present research paper on purified steam at IEEE conference

Facebook
Twitter
LinkedIn
Reddit
Email

During IEEE’s 35th PV specialist conference, RASIRC and the Fraunhofer Institute for Solar Energy Systems will present their research on using purified steam in the solar cell fabrication process with their paper, “Purified Steam for Industrial Thermal Oxidation Processes.” The paper compares purified steam with pryolytic team for silicon solar cell fabrication.

“Our research with Fraunhofer on using purified steam in the solar cell fabrication process has generated many positive and cost effective results,” said RASIRC founder and president Jeffrey Spiegelman. “This result reveals that purified steam enables the growth of high quality thermal oxides for the industrial fabrication of thermal oxide-passivated silicon solar cells.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Thermal silicon oxides are known to passivate silicon surfaces and have been used for the fabrication of efficient silicon solar cells. In most cases, the steam used for wet oxidation is produced by pyrolysis of highly purified hydrogen and oxygen gases. A new approach for direct steam delivery is to purify vaporized deionized water, wherein the process decreases costs for expendables, eliminates hydrogen gas from the facility and improves safety because of increased saturation with steam in the process atmosphere results in a higher cell growth rate during oxidation.

The research paper compares the two steam generation technologies, analyzes the physical properties of purified steam grown thermal oxides and implements a direct steam-based oxidation process into an industrial fabrication sequence for rear-surface passivated solar cells. Results have shown that by using industrial equipment for wet chemical cleaning and thermal oxidation, high effective carrier lifetimes of ~400 µs on 1 Ohmcm floatzone wafers for both steam sources were achieved.

Read Next

June 9, 2025
Solar manufacturer Qcells has launched a recycling arm, called EcoRecycle, and a recycling plant in the US state of Georgia.
Premium
June 9, 2025
N-type polysilicon prices have dropped to RMB34,000/ton as the project installation rush ends, putting cost pressure on the industrial chain.
June 9, 2025
Sonnedix has signed a power purchase agreement (PPA) with Renfe to supply 420GWh of renewable energy annually for its commercial operations.
June 9, 2025
Saatvik Solar, a unit of Saatvik Green Energy Limited (SGEL), is building a 4.8GW solar cell and 4GW module manufacturing facility in Ganjam district of Odisha.
June 9, 2025
Growing political headwinds threaten to dent US solar manufacturing and project deployment, despite a strong start to 2025.
June 9, 2025
US residential solar installer Sunnova has laid off more than half of its workforce, while a subsidiary from Delaware filed for Chapter 11 bankruptcy.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 17, 2025
Napa, USA
Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
September 16, 2025
Athens, Greece