RENA’s ‘InCellPlate Cu’ platform offers major cost savings at highest efficiency level

Facebook
Twitter
LinkedIn
Reddit
Email

RENA’s ‘InCellPlate Cu’ inline equipment for direct plating of a Ni/Cu/Ag stack on silicon, when combined with laser ablation of the silicon nitride layer and subsequent inline anneal, is said to provide complete front-side metallization for solar cell manufacturing. Compared with screen-printing, the technology allows cutting the cell production cost by US$0.06 (cents) and at the same time offers potential for cell efficiency improvement.

Problem

Conventional screen printing of the front contacts remains among the most costly processes in solar cell manufacturing and at the same time limits the achievable finger width and emitter sheet resistance and so limits the overall cell performance.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Solution

Direct plating on silicon with RENA’s InCellPlate Cu makes the use of screen-print paste on the front side obsolete. It further replaces most of the silver with cheaper copper as a conductive metal, which is claimed to reduce costs per cell by US$0.06 (cents). Furthermore, the technology allows the formation of thinner fingers (≤30 μm) and contact formation to emitters with higher sheet resistance (≥120 Ohmsq.), thus enabling higher currents and voltages while keeping the fill factor high. RENA has already successfully demonstrated the technology, reaching 20.8% efficiency on Cz-PERC cells (verified by ISE Cal-Lab). Modules made with this technology successfully passed more than three times the IEC61215 test procedures and the soldered strings showed outstanding adhesion properties(>1N/mm), according to the company.

Applications

Solar cell processing, front side contact formation.

Platform

The InCellPlate Cu is based on RENA’s proven NIAK inline platform for up to 3600w/h throughput. RENA’s patented technology allows single side plating of the cell’s sunny side while keeping the rear-side dry. This reduces the drag-out of electrolyte and associated production costs, avoids undesired plating of the contacts and excludes the risk of degradation of the aluminum paste by contact with the electrolyte.

Availability

Currently available. 

Read Next

December 9, 2024
Located in the northern department of Atlantic, Enel says the Guayepo I and II project is the country’s largest operational solar site.
December 9, 2024
Sunstone is set to begin its engineering and procurement phase in early 2025 and start phased construction in 2026.
Premium
December 9, 2024
After a challenging year for polysilicon producers, Carrie Xiao assesses whether market conditions will improve and prices rebound.
December 9, 2024
US renewable energy developer, Longroad Energy, announced financial close of 111MWdc solar and 85MWac/340MWh storage project Sun Pond in Maricopa County, Arizona, 4 December.
December 9, 2024
Swiss solar manufacturer Meyer Burger has secured US$39.48 million to support its restructuring operations and “stabilise” its business.
December 9, 2024
Chinese solar module manufacturer JinkoSolar has filed a patent infringement action in the US District Court for the Northern District of California (San Francisco) against VSUN Solar USA, Toyo and its affiliates in the US and abroad.

Subscribe to Newsletter

Upcoming Events

Solar Media Events, Upcoming Webinars
December 12, 2024
9am GMT / 10am CET
Solar Media Events, Upcoming Webinars
December 18, 2024
9am GMT / 10am CET
Solar Media Events
February 4, 2025
London, UK
Solar Media Events
February 17, 2025
London, UK