SCHOTT Solar and IMEC team on crystalline cell R&D targeting 20% efficiencies and ultra-thin wafers

Facebook
Twitter
LinkedIn
Reddit
Email

In a planned three-year effort to reduce the cost of producing crystalline silicon solar cells by reducing and the amount of Si/Watt that is needed by half and boost conversion  efficiencies to approximately 20%, SCHOTT Solar has joined IMEC’s newly launched silicon photovoltaics industrial affiliation program (IIAP). The program is expected to see silicon solar cell manufacturers, equipment and material suppliers collaborate and share intellectual property, talent, risk and costs involved in the project.

“In the highly dynamic market of solar power, short time to market for new products is essential,” noted Dr. Martin Heming, Chief Executive Officer at SCHOTT Solar AG. “Therefore, SCHOTT Solar is pleased to announce that the company has joined the high-level IIAP R&D program at IMEC, the leading research institute in the field. We support IMEC’s ambitious goals and their work towards creating success their partners.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

IMEC’s program will explore both wafer-based bulk silicon solar cells and epitaxial cells. On the bulk-silicon solar cell sub-program, generic process technology will be developed that will improve the efficiency of the cell while reducing manufacturing costs.

The active silicon layer thickness will be reduced from 150µm down to 40µm. To meet efficiencies of about 20%, alternative back-side dielectric stacks and interdigitated back-side contacts (i-BC) will be introduced in thin-wafers using a PERL-style (PERL = passivated emitter and rear local back surface field) concept in an industrial process flow. Cell module integration will be investigated since reduced wafer thickness will impose specific integration requirements.

“Building on our 25 years track record in silicon solar cells and our successful experience with Industrial Affiliation Programs on CMOS scaling, we are confident that we will provide our partners a dynamic research platform for accelerated process development;” said Jef Poortmans, Program Director Solar+ at IMEC.

 

Read Next

June 14, 2024
Ørsted has commissioned its Helena Energy Center in the US state of Texas, a 518MW co-located solar and wind project.
June 14, 2024
US renewable energy project developer Ameren Missouri has acquired a 150MW solar PV project in the state of Illinois.
June 14, 2024
PV Tech's coverage of the SNEC 2024 trade show continues on day two, kicking off with a discussion with GCL System Integration.
Premium
June 14, 2024
PV Tech Premium looks at FERC's recent ruling on Order 1920 and how it will affect transmission planning in the future.
June 14, 2024
Edify Energy has proposed a 200MW solar PV farm near the newly rebuilt Callide coal-fired power station in Central Queensland, Australia.
June 13, 2024
A new report from Ember Climate has found that cumulative global solar manufacturing capacity will almost double solar deployment by 2030.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
July 2, 2024
Athens, Greece
Solar Media Events
July 9, 2024
Sands Expo and Convention Centre, Singapore
Solar Media Events
September 24, 2024
Warsaw, Poland
Solar Media Events
September 24, 2024
Singapore, Asia