Scifiniti’s SmartWafer’ technology reduces high purity silicon usage by more than 90%

Facebook
Twitter
LinkedIn
Reddit
Email

US start-up, Scifiniti is developing a low-cost ‘SmartWafer’ that is claimed to enhance the performance and significantly lower the cost of silicon-based products.

Problem

To enable the continued cost reduction and growth of solar-based energy, the largest opportunity in the value chain is to dramatically decrease the cost of the silicon wafer. SmartWafer has been engineered specifically for solar cell manufacturing, unlike traditional wafers that have been adapted from the semiconductor industry. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

SmartWafer uses a thin, deposited, high-quality silicon layer on a conductive substrate, offering the same form-factor as a standard wafer enabling a “drop-in” replacement. Cell and module manufacturers can use the SmartWafer without any changes to existing processes or purchase new capital equipment. The company estimates that high purity silicon usage is reduced by more than 90% and provide improved yields from reduce wafer breakage rates when compared to conventional wafers. The wafers comprise a 30 micrometer high quality multicrystalline silicon active layer, on top of a 170 micrometer low cost substrate for mechanical support. Scifiniti notes that a silicon layer of 30 to 50 microns with effective light trapping has the same conversion efficiency as a conventional wafer of 160 – 180 microns.

Applications

Solar-grade wafers.

Platform

SmartWafers comprise a 30 micron high quality multicrystalline silicon active layer. Along with the SmartWafer, Scifiniti has developed a number of new technologies, including an in-line continuous deposition system, a crystallization system and advanced semi-grade ceramic processes.

Availability

Sampling only.

Read Next

October 14, 2025
German IPP wpd has started construction at its 140.6MW Marcy solar park in the Nièvre department of central France.
October 14, 2025
Levanta Renewables will develop a 166MWp ground-mounted solar and storage project in the Visayas Islands as part of the Philippines’ Fourth Green Energy Auction. 
October 14, 2025
India has installed 4.9GW of residential rooftop solar capacity in the first half of 2025, according to a report by IEEFA and JMK Research.
October 14, 2025
Apple will support 650MW of projects as part of a major expansion of its renewable energy investments in Europe, aimed at reducing its carbon footprint.
October 13, 2025
France’s Engie and the UAE’s Masdar have been chosen to jointly develop a 1.5GW PV power plant near Abu Dhabi.
Premium
October 13, 2025
Brett Beattie of Castillo Engineering looks at some of the key land grading work that can make multimillion-dollar differences to projects.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK