Scifiniti’s SmartWafer’ technology reduces high purity silicon usage by more than 90%

September 13, 2013
Facebook
Twitter
LinkedIn
Reddit
Email

US start-up, Scifiniti is developing a low-cost ‘SmartWafer’ that is claimed to enhance the performance and significantly lower the cost of silicon-based products.

Problem

To enable the continued cost reduction and growth of solar-based energy, the largest opportunity in the value chain is to dramatically decrease the cost of the silicon wafer. SmartWafer has been engineered specifically for solar cell manufacturing, unlike traditional wafers that have been adapted from the semiconductor industry. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

SmartWafer uses a thin, deposited, high-quality silicon layer on a conductive substrate, offering the same form-factor as a standard wafer enabling a “drop-in” replacement. Cell and module manufacturers can use the SmartWafer without any changes to existing processes or purchase new capital equipment. The company estimates that high purity silicon usage is reduced by more than 90% and provide improved yields from reduce wafer breakage rates when compared to conventional wafers. The wafers comprise a 30 micrometer high quality multicrystalline silicon active layer, on top of a 170 micrometer low cost substrate for mechanical support. Scifiniti notes that a silicon layer of 30 to 50 microns with effective light trapping has the same conversion efficiency as a conventional wafer of 160 – 180 microns.

Applications

Solar-grade wafers.

Platform

SmartWafers comprise a 30 micron high quality multicrystalline silicon active layer. Along with the SmartWafer, Scifiniti has developed a number of new technologies, including an in-line continuous deposition system, a crystallization system and advanced semi-grade ceramic processes.

Availability

Sampling only.

Read Next

Premium
November 7, 2025
The increasing technical complexity of the renewable energy space has increased the demands on capital raising for those in the sector.
November 7, 2025
JA Solar has signed a module supply agreement with EPC contractor Larsen & Toubro (L&T) for two utility-scale projects in Uzbekistan. 
November 7, 2025
Saatvik Green Energy, through its subsidiary Saatvik Solar Industries, secured solar PV module orders worth INR2.99 billion (US$33.7 million). 
November 7, 2025
The US Geological Survey (USGS) has released the 2025 List of Critical Minerals, which includes silicon and tellurium.
November 7, 2025
Members of the European Parliament are urging the European Commission to restrict Chinese solar inverter manufacturers’ access to the bloc’s energy infrastructure, due to cybersecurity concerns.
November 7, 2025
Renewables asset fund Alantra Solar has secured €355 million to support the development and construction of five solar PV projects in Italy.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal