Sharp accomplishes 35.8% solar cell efficiency

Facebook
Twitter
LinkedIn
Reddit
Email

Sharp has released reports of a solar cell conversion efficiency that reaches 35.8% using a triple-junction compound solar cell. The company reached its breakthrough as part of a research and development initiative supported by Japan’s New Energy and Industrial Technology Development Organization on the theme of “R&D on innovative solar cells”. Contrasting from the common used silicon-based solar cells, the compound solar cell uses photo-absorption layers, which are made from a composite of two or more elements such as indium and gallium. For the past nine years, Sharp has been researching and developing a triple-junction compound solar cell that reaches high conversion efficiency by stacking three photo-absorption layers.

When it comes to triple-junction compound solar cells, to improve their efficiency it’s important to enhance the crystallinity in each photo-absorption layer. It is equally vital that the solar cell be made of materials that can maximize the effective use of solar energy. In the past germanium was used as a bottom layer because of its ease of manufacturing, but while germanium produces a large amount of current, the majority of what is produced is wasted and therefore not effectively used for electrical energy.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Sharp solved this problem by forming the bottom layer from indium gallium arsenide (inGaA), a matter with high light utilization efficiency. While the process to make such an efficient bottom layer from InGaAs with high crystallinity was difficult, Sharp did just so by using its technology for forming layers. This resulted with the total wasted current being diminished while the conversion efficiency, which had previously been 31.5% in Sharp’s cells, to be increased to 35.8%.

The 35.8% conversion efficiency was confirmed by the National Institute of Advanced Industrial Science and Technology this past September.

Read Next

October 3, 2025
Renewables developer Madison Energy Infrastructure has bought the US distributed generation assets of NextEra Energy Resources.
October 3, 2025
EDF Renewables and Enlight Renewable Energy have advanced solar-plus-storage projects in New Mexico and Arizona.
October 3, 2025
SunStrong Management has raised US$900 million to refinance a 'large portfolio' of residential solar assets developed by SunPower.
October 3, 2025
The US solar manufacturing industry is feeling bullish, despite the policy whiplash inflicted over the summer and the increased pressure on US solar supply chains.
October 3, 2025
Chinese government policies and supply-side production cuts will drive a significant increase in solar and storage component costs.
Premium
October 2, 2025
Australia's solar sector delivered a strong September performance in the National Electricity Market (NEM) as the country entered spring, with combined solar PV generation reaching 3,933GWh - a 17.83% increase from August's 3,338GWh.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 7, 2025
Manila, Philippines
Solar Media Events
October 7, 2025
San Francisco Bay Area, USA
Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland