Technical Papers

Premium
Cell Processing, Photovoltaics International Papers
For many applications, bifacial modules offer a cost-effective way of increasing energy yields, which explains why the interest in bifacial cells in the PV industry is steadily growing and is expected to continue. However, the metallization of bifacial cells creates new challenges, as the same materials and techniques developed for n surfaces are generally not directly, or simultaneously, applicable to p surfaces; this necessitates sequential metallization of each side, resulting in added cost and/or complexity. This paper introduces a simple co-plating approach with the objective of simplifying the metallization of bifacial cells in a cost-effective way, and which is designed for multi-wire module integration. The metallization route is described, and high cell efficiencies of up to 22.4% are demonstrated using this co-plating approach with bifacial nPERT+ cells (where ‘+’ signifies the bifacial nature of these cells). Initial thermal-cycling reliability data of test structures and 1-cell laminates is presented. Finally, cost-of-ownership (COO) estimates are given, which predict the co-plating approach to be ~40% cheaper than bifacial screen-printed metallization. It is shown that the combination of the high efficiency potential of nPERT+ cells and the reduced costs of co-plating has the potential to deliver module-level costs of ~$0.25/Wpe (glass–glass configuration).
Premium
Cell Processing, Photovoltaics International Papers
There are numerous tools and methods available on the market for the optical and electrical quality control of high-efficiency silicon solar cells during their industrial production, and even more are discussed in the literature. This paper presents a critical review of the possibilities and limitations of these tools along the value chain, from wafer to cell, in the case of passivated emitter and rear cells, as well as a discussion of some showcases. Economic and technological challenges and future trends are addressed.
Premium
Materials, Photovoltaics International Papers
High-performance multicrystalline (HPM) silicon, achieved by nucleation on special seed layers at the crucible bottom, is now increasingly replacing conventional multicrystalline (mc) silicon, which is solidified on the standard silicon nitride coating. The HPM material is characterized by a very fine initial grain structure consisting of small, regularly shaped grains surrounded by a large number of random-angle grain boundaries. These grain structure properties, which differ significantly from those of conventional multicrystalline silicon, lead to a much lower dislocation content in the material, and therefore result in higher efficiencies of the silicon solar cells produced. This paper gives a rough overview of the worldwide R&D activities on HPM silicon in recent years, supplemented by several research results obtained at Fraunhofer IISB/THM. The focus is on the different seeding methods, the grain structure properties and the development of the grain and defect structure over the ingot height, as well as on the main challenges for further improvements in material quality and production costs.
Premium
Market Watch, Photovoltaics International Papers
Having installed more than 75 gigawatts in 2016, the solar industry continues to create opportunities for cell and module manufacturers to expand capacities, while upgrading technologies and improving process flows. Supply remains dominated by p-type crystalline silicon modules, despite ongoing research into n-type variants and the addition of PERC on p-type mono cells. The efficiency increases from p-type mono are now driving p-type multi cell producers to accelerate changes to production lines from both black silicon and PERC. This is now setting new benchmarks for the supply of solar modules in 2017 to utility-scale solar installations.
Premium
Cell Processing, Photovoltaics International Papers
A novel nanoscale pseudo-pit texture has been formed on the surface of a multicrystalline silicon (mc-Si) wafer by using a metal-catalysed chemical etching (MCCE) technique and an additional chemical treatment. A desirable nanoscale inverted-pyramid texture was created by optimizing the recipe of the MCCE solution and using a proprietary in-house chemical post-treatment; the depth and width of the inverted pyramid was adjustable within a 100–900nm range. MCCE black mc-Si solar cells with an average efficiency of 18.90% have been fabricated on CSI’s industrial production line, equating to an efficiency gain of ~0.4%abs. at the cell level. A maximum cell efficiency of 19.31% was achieved.
Premium
Financial, Legal, Professional, PV Tech Power Papers
Finance | Danielle Ola looks at some of considerations of investors looking to capitalise on the opportunities for solar in Sub-Saharan Africa.
Premium
Plant Performance, PV Tech Power Papers
Asset management | As one of the biggest utility PV owners in the UK, Foresight has extensive experience of getting the most out of operational solar plants. Its technical director Arnoud Klaren draws on some of the lessons the company has learned from minimising the risks that affect solar projects over their lifetime.
Premium
Financial, Legal, Professional, PV Tech Power Papers
Business models | Solar is forecast to have another strong year of growth, but in spite rather than because of political support in many parts of the world. Simon Currie and Rob Marsh assess some of the commercial drivers for solar in 2017 and beyond as it finds itself increasingly at the mercy of market forces but arguably better placed to become a true global competitor.
Premium
Market Watch, PV Tech Power Papers
Market update | Japan’s solar market has slowed considerably since the early days of its feed-in tariff. But as Andy Colthorpe reports, its fundamentals still look strong and there areplenty of promising policy drivers in the pipeline to keep demand buoyant.
Premium
Market Watch, PV Tech Power Papers
Trade wars | The EU-China trade row appears to be entering its swansong but its impact has been eroded and overridden by global solar market dynamics. We look at the divisive policy’s future as it plays catch up.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Media Partners, Solar Media Events
July 2, 2025
Bangkok, Thailand
Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico