Wacker’s ‘TECTOSIL’ encapsulant offers PID protection

Facebook
Twitter
LinkedIn
Reddit
Email

A thermoplastic encapsulant from Wacker, ‘TECTOSIL’, has proved to offer protection against potential-induced degradation (PID), according to tests carried-out by Photovoltaik-Institut Berlin. The testers confirmed that such modules do not display leakage currents due to PID when using the thermoplastic silicone elastomer sheet in the encapsulation of PV modules.

Problem

Potential-induced degradation (PID) is caused by undesired leakage currents on the cell surface. They cause negative charge carriers that would normally flow to the cell’s back contact to be discharged via the encapsulation and module frame, unused. Penetrating moisture and high module voltages promote this type of discharge, which can cause considerable performance losses. However, the PID effect is reversible and can be restricted through technical countermeasures.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

Measurements by the Photovoltaik-Institut Berlin have shown that such PID effects can be effectively suppressed, or prevented, with TECTOSIL encapsulant, which was tested as per IEC standard 60904-1 at a system voltage of 1,000 volts. The modules encapsulated with Wacker’s material showed no signs of PID, either in their voltage characteristics or during subsequent electroluminescence analysis.

Applications

Module encapsulation.

Platform

TECTOSIL is a flexible, highly transparent and electrically insulating sheet comprising an organosilicone copolymer. Because of its thermoplastic properties, the silicone-based polymer can be processed quickly and inexpensively – without curing or other chemical reactions, which facilitates short cycle times and a high tolerance to local temperature differences within the laminator. The sheet does not contain catalysts or corrosive substances. This allows for the encapsulating solar cells containing films of compound semiconductors or other highly sensitive chemical substances – such as transparent conductive oxides.

Availability

September 2012 onwards.

Read Next

September 15, 2025
Advances in edge-based artificial intelligence are helping make solar and storage interoperable by tackling the data challenge, writes Andrew Foster.
September 15, 2025
Italy’s latest renewable energy tender has received 12GW of bids, of which the majority, 10GW, came from solar PV.
September 15, 2025
Sunrun has priced a securitisation of leases and power purchase agreements, taking its non-recourse debt capital raised in Q3 above US$1.5 billion. 
September 15, 2025
Norwegian energy firm Statkraft has agreed to divest a portion of its renewable energy portfolio to Serentica Renewables.
September 15, 2025
UNSW spin-out company Lab360 Solar has been awarded funding from ARENA to bring its drone-based PV inspection technology to market.
Premium
September 15, 2025
The UK government and solar industry have jointly published a long-anticipated roadmap detailing how to maximise the country’s solar potential. Chris Hewett, CEO of Solar Energy UK takes a closer look at the details.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines