Electroluminescence inspection system from Vitronic provides solar cell defect management

Facebook
Twitter
LinkedIn
Reddit
Email

Vitronic’s VINSPECsolar electroluminescence inspection system is designed to detect defects within solar cells that could influence electrical performance of the solar module. By using electroluminescence inspection, all defect areas are automatically detected, displayed and classified by relevant software before lamination, so that reworking can increase the module's efficiency. Archived electroluminescence images of the finished module also serve as proof of the delivered quality.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

In module production, cells, strings, matrices all the way to modules are subjected to mechanical and thermal stresses. Missing electrical connections or wrong wiring can also occur during soldering. In addition, the solar cells used could display quality deviations depending on where they were purchased.

Solution

The VINSPECsolar electroluminescence inspection system detects inactive areas, weak active cells, cracks effecting electrical performance, micro-cracks and grid line interruptions. The inspections can be conducted on the solar cell string and solar cell matrix before or after lamination as well as on the finished module. This makes it possible for the module manufacturer to intervene and implement improvements before lamination, thereby optimizing the module's performance. A classification of the modules, based on the electroluminescence inspection, takes place after lamination and the images are saved as proof of the quality.

Applications

Detecting inactive areas, weak active cells, cracks effecting electrical performance, micro-cracks and grid line interruptions.

Platform

The electroluminescence process involves stimulating the solar cell string or module with electricity. Special cameras require only about one second illumination time to capture the weak light emissions of the cell as an electroluminescent image. An automated image assessment, using specially-developed software methods (e.g. micro-crack detection) takes place in order to then displays the defect areas on a monitor. The image is displayed on monitors of e.g. 46'' in size and can also be made available to reworking stations. The frequency of the individual defect characteristics is recorded and evaluated using the integrated statistics function.

Availability

January 2012 onwards. 

Read Next

October 13, 2025
France’s Engie and the UAE’s Masdar have been chosen to jointly develop a 1.5GW PV power plant near Abu Dhabi.
Premium
October 13, 2025
Brett Beattie of Castillo Engineering looks at some of the key land grading work that can make multimillion-dollar differences to projects.
October 13, 2025
Korean chemical production firm OCI Holdings has acquired a 65% stake in a Vietnamese solar wafer production plant, intending to export solar wafers to the US.
October 13, 2025
The world is on pace to exceed 3TW of cumulative solar installations by the end of the year, according to a report from DNV.
October 13, 2025
The Trump administration has cancelled the 6.2GW Esmeralda 7 solar project in Nevada – once touted as one of the largest in the world.
October 13, 2025
Two Chinese state-owned energy enterprises have signed cooperation agreements on PV and wind power projects with Saudi companies, with the total contract value exceeding RMB30 billion (US$4.2 billion). 

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK