Electroluminescence inspection system from Vitronic provides solar cell defect management

Facebook
Twitter
LinkedIn
Reddit
Email

Vitronic’s VINSPECsolar electroluminescence inspection system is designed to detect defects within solar cells that could influence electrical performance of the solar module. By using electroluminescence inspection, all defect areas are automatically detected, displayed and classified by relevant software before lamination, so that reworking can increase the module's efficiency. Archived electroluminescence images of the finished module also serve as proof of the delivered quality.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

In module production, cells, strings, matrices all the way to modules are subjected to mechanical and thermal stresses. Missing electrical connections or wrong wiring can also occur during soldering. In addition, the solar cells used could display quality deviations depending on where they were purchased.

Solution

The VINSPECsolar electroluminescence inspection system detects inactive areas, weak active cells, cracks effecting electrical performance, micro-cracks and grid line interruptions. The inspections can be conducted on the solar cell string and solar cell matrix before or after lamination as well as on the finished module. This makes it possible for the module manufacturer to intervene and implement improvements before lamination, thereby optimizing the module's performance. A classification of the modules, based on the electroluminescence inspection, takes place after lamination and the images are saved as proof of the quality.

Applications

Detecting inactive areas, weak active cells, cracks effecting electrical performance, micro-cracks and grid line interruptions.

Platform

The electroluminescence process involves stimulating the solar cell string or module with electricity. Special cameras require only about one second illumination time to capture the weak light emissions of the cell as an electroluminescent image. An automated image assessment, using specially-developed software methods (e.g. micro-crack detection) takes place in order to then displays the defect areas on a monitor. The image is displayed on monitors of e.g. 46'' in size and can also be made available to reworking stations. The frequency of the individual defect characteristics is recorded and evaluated using the integrated statistics function.

Availability

January 2012 onwards. 

Read Next

September 10, 2025
At RE+ 2025, companies launched AI-driven platforms, terrain-following trackers, low-carbon modules, and advanced energy management solutions for solar and storage.
Premium
September 10, 2025
PV Talk: Italy’s new CfD policy offers clear support for solar developers in an otherwise uncertain legislative landscape, says Terrawatt's Patrizio Donati.
September 10, 2025
A project claimed to be Germany’s largest agriPV plant has been commissioned in the north-east of the country.
September 10, 2025
Renewables developer rPlus Energies has secured US$100 million in tax equity financing for its 125MW solar PV plant in the US state of Idaho.
September 10, 2025
Indian solar module manufacturer Vikram Solar reported a 79.7% year-on-year increase in revenue for the first quarter of FY26.
September 10, 2025
Cordelio Power has started commercial operations at its 150MW Winfield solar project in Lincoln County, Missouri.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines