Fraunhofer ISE announces new standard for inverters with arc fault detectors

May 15, 2023
Facebook
Twitter
LinkedIn
Reddit
Email
The new IEC standard 63027 will eliminate some of the weaknesses of the old UL 1699B standard, which did not simulate real operation sufficiently. Image: Fraunhofer ISE

German research body Fraunhofer Institute for Solar Energy Systems (Fraunhofer ISE) has announced a new international test standard for PV inverters with integrated arc fault detection systems.

The new IEC standard 63027 will eliminate some of the weaknesses of the old UL 1699B standard, which did not simulate real operation sufficiently. The old standard, mandatory for newly installed PV systems in the US since 2011, could not detect many arcs as they did not reach the alarm threshold values or because false alarms were triggered.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Fraunhofer ISE said that for the test based on IEC standard 63027, an electronic DC source is used as a PV simulator instead of real PV modules.

“A realistic test setup can significantly reduce the risk of undetected arcs and false tripping. In the test, it should be possible to ignite the arc as realistically as possible and under repeatable conditions,” said the institution.

“Current flows from the PV simulator into the inverter through a connection point that can be precisely disconnected. The connection point is a ball-and-socket joint made up of two tungsten electrodes, which are pulled apart at a defined speed, thus igniting a characteristic arc.”

The test setup also takes electrode distance and speed into account. To ensure the measurement result is not influenced by the PV simulator, a filter network is connected between the inverter and the simulated PV system.

“The time until the inverter is switched off is decisive for the proper functioning of the arc detector. The less time an arc burns, the lower the energy input is into the faulty contact point, i.e. short switch-off times reliably prevent a fire from starting,” the institution said, adding that if the energy is between 200 and 750 joules and the switch-off time is less than 2.5 seconds, the detector passes the test.

Automatic reconnection after detector tripping is allowed four times within 24 hours. After the fifth time, it must be reconnected manually.

The new test bench is now deployed in Fraunhofer ISE’s TestLab Power Electronics. Its focus is on the measurement and characterisation of electronic power feed units for industrial customers.

“With the new test bench, we are expanding the range of services offered by our TestLab Power Electronics, where we perform accredited tests in accordance with grid codes, efficiency measurements and impedance spectroscopy investigations of inverters,” said Steffen Eyhorn, head of TestLab Power Electronics.

The institution also recently opened a new outdoor solar technology test field in Germany, enabling a faster and more accurate evaluation of PV modules, as reported by PV Tech last week.

Read Next

November 21, 2025
Fotowatio Renewable Ventures (FRV) Australia has submitted an environmental referral for a 200MW solar PV project paired with a 550MW/2,200MWh battery energy storage system (BESS) in New South Wales.
November 21, 2025
JUWI, a wholly-owned subsidiary of MVV Energie AG, has completed the sale of a 156MW solar PV portfolio in Greece to Mirova, an affiliate of Natixis Investment Managers specialising in sustainable investing.
November 21, 2025
ib vogt has entered a strategic partnership with Ingka Investments for a 210MW solar project in Rajasthan, India.
November 20, 2025
Australia achieved a record-breaking 5.3GW of solar PV installations in 2024, marking a recovery for the market while highlighting the nation's unique position as a rooftop-dominated solar economy.
November 20, 2025
SunCable has submitted its 20GW Muckaty Solar Precinct proposal to Australia's EPBC Act for federal environmental assessment.
November 20, 2025
US independent power producer (IPP) Arevon Energy has begun construction on a 124MW solar PV project in Illinois, its first utility-scale project in the state.

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA