Fraunhofer ISE notes progress in tandem III-V on silicon solar cells

Facebook
Twitter
LinkedIn
Reddit
Email
With the tandem solar cell made of silicon and III-V semiconductor materials, a more energetically efficient use of the solar spectrum is possible, compared to conventional solar cells available today. Image: Fraunhofer ISE

PV research institute Fraunhofer ISE has reported a new efficiency record of 22.3% for a multi-junction solar cell made of silicon and III-V semiconductor materials using a direct epitaxy process developed with tool supplier AIXTRON. 

Researchers and scientists at Fraunhofer ISE in cooperation with TU Ilmenau, the Philipps University of Marburg and the system manufacturer AIXTRON, under the MehrSi project, funded by the German Federal Ministry for Education and Research BMBF.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The partners were able to reduce the defect density significantly enough in the III-V semiconductor layers on silicon to report the III-V/Si tandem solar cell with a new efficiency record of 22.3%. 

Current-voltage characteristic of the new III-V/Si tandem solar cell with an efficiency of 22.3%. The III-V layers were directly deposited on the silicon bottom cell in an epitaxial process. In order to match the atomic bonding between atoms in the crystal structures, a nucleation layer of gallium-phosphide (GaP) and a so-called metamorphic buffer was introduced between the Si and GaAs. Optimizing these transition layers was a main challenge in this project.Image: Fraunhofer ISE

“The record efficiency of our III-V/Si tandem solar cell demonstrates that we have achieved a very good understanding of the materials,” noted Dr. Frank Dimroth, coordinator of the MehrSi project. With the successful direct growth of III-V layers on silicon, we can avoid using expensive III-V substrates for epitaxy. This approach is, therefore, a key technology for the cost-effective manufacture of high efficiency tandem solar cells in the future.”

Fraunhofer ISE expects the work on tandem cells to be carried out in the new R&D facilities, when completed in 2020, which is expected to accelerate developments in multi-junction solar cells.

Tandem perovskite-silicon tandem cells advance efficiencies

However, recent efficiency records from Oxford PV in late December, 2018 indicate that perovskite-silicon tandem cells are rapidly approaching efficiencies of 30% and more when the US National Renewable Energy Laboratory certified Oxford PV’s 1 cm2 tandem cell with a 28% conversion efficiency, up from Oxford PV’s own previous certified record of 27.3%.

Oxford PV in late December, 2018 indicate that perovskite-silicon tandem cells are rapidly approaching efficiencies of 30% and more when the US National Renewable Energy Laboratory certified Oxford PV’s 1 cm2 tandem cell with a 28% conversion efficiency, up from Oxford PV’s own previous certified record of 27.3%. Image: Oxford PV

Dr Chris Case, Chief Technology Officer at Oxford PV had previously said, “Today’s record demonstrates the unprecedented pace of our technology development. We are continuing to push our perovskite-silicon solar cell technology, with a roadmap that extends beyond 30% efficiency. The solar cells we are developing are not only efficient but also stable. Similar devices from our research and development facility have passed at least 2000 hours of damp heat reliability testing, in line with IEC 61215 protocol.”

Read Next

May 15, 2025
Solar manufacturer Canadian Solar recorded a slight increase in module shipments and endured losses in Q1 amid 'geopolitical complexities.'
May 15, 2025
Qcells claims its perovskite/silicon tandem technology has moved a step closer to commercialisation after passing several reliability tests.
May 14, 2025
US energy officials have found unexplained communication equipment inside some Chinese-made inverter devices.
Premium
May 14, 2025
As the University of Queensland take the first steps towards commercialising a tin halide perovskite solar cell concept, George Heynes explores the development of the technology.
May 6, 2025
While other technologies exist, c-Si solar PV technology is the leading candidate for large-scale energy production, writes Radovan Kopecek.
May 2, 2025
A study from researchers at the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia has shown that a synthetic molecule in the design of a perovskite solar cell can boost its energy efficiency and longevity.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 8, 2025
Asia