JA Solar to combat cell LID issues with Ga-doped p-type crystalline silicon wafers

Facebook
Twitter
LinkedIn
Reddit
Email

‘Solar Module Super League’ (SMSL) member, JA Solar has licensed a number of patents from Shin-Etsu Chemical on doping Ga in silicon crystals and using the Ga-doped p-type crystalline silicon wafers for making solar cells to mitigate the impact of Light Induced Degradation (LID).

JA Solar indicated that adopting Ga-doped wafer processes would both improve solar cell conversion efficiencies and LID mitigation for advanced solar cells in the future, providing more stable and better long-term energy generation.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Jin Baofang, JA Solar's Chairman of Board of Directors, commented that “using Ga-doped silicon wafers for solar cell application definitely results in better performance of solar cells and PV modules, as well as the improvement of their long-term reliability. Being the patent holder of several leading technologies including bifacial PERC technology in China and other countries, JA Solar has benefited from and always supports IP protection. We deeply appreciate Shin-Etsu Chemical granting JA Solar their IP rights of Ga-doped crystalline silicon technology, which is an important step for JA Solar in introducing advanced technology and supporting the industry's intellectual property protection. JA Solar will continue to develop and provide high-performance PV products and clean-energy solutions to our customers worldwide through technological innovation and continuous performance improvement.”

Typically, monocrystalline solar cells are fabricated on boron doped p-Type wafers but oxygen content can create defects that result in bulk lifetime degradation when the cells are first exposed to light.

There are several possible considerations in using Ga in the crystal growth phase and the need to use consistently high-purity polysilicon in the process. However, the ability to signifcantly reduce LID effects over the lifetime of modules and provide higher overall efficiencies could be the key benefit, especially with next-generation solar cells. 

Read Next

October 8, 2025
University of Sydney scientists have created the largest and most efficient triple-junction perovskite-perovskite-silicon solar cell on record.
Premium
October 6, 2025
Talon PV aims to be the first US company to safely manufacture TOPCon cells at scale, backed by European technology and a crucial First Solar licensing deal.
October 3, 2025
The US solar manufacturing industry is feeling bullish, despite the policy whiplash inflicted over the summer and the increased pressure on US solar supply chains.
October 2, 2025
PV products using perovskite technology could assume a dominant position within the next ten years, according to module producer Qcells' CTO.
Premium
October 2, 2025
PV Talk: Qcells’ CTO Danielle Merfeld discusses the imminent opening of America’s first integrated c-Si ingot-to-module factory and her belief in solar’s long-term strengths.
September 29, 2025
Indian solar manufacturer Waaree has said it does not expect to pay additional duties on its solar cell imports to the US, following the start of an antidumping and countervailing duty (AD/CVD) investigation by the US Customs and Border Patrol (CBP).

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK