Kehua Tech’s SPI4167K-B-HUD central inverter fully compatible with 600W+ solar modules

Facebook
Twitter
LinkedIn
Reddit
Email
Kehua’s latest 4.167MW (SPI4167K-B-HUD) 1500V central inverter is intended to improve the system efficiency by more than 1% and reduce the LCOE cost by over 5%, according to the company. Image: Kehua Tech

Kehua Tech’s latest 4.167MW central inverter solution, the SPI4167K-B-HUD comes with a unique power range and multiple technical innovations to be fully compatible with the new era of large-area high-performance PV modules that can exceed 660W. 

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The new era of large-area high-performance PV modules are expected to deliver in the range of 32% more power than the module classes in 500W range. Larger power supply brings further potential for higher sub-array power density and lower Levelised Cost of Electricity (LCOE), with the application of larger sub-array capacity seen as an inevitable trend. However, larger sub-arrays need larger capacity inverters, transformers, distribution units and other system devices.

The larger sub-array design matching with inverters with higher power density will need to effectively reduce the consumption and installation cost of inverters, cables, distribution cabinets and other system devices to achieve meaningful LCOE reductions. Increasingly, inverters need to be ‘grid friendly’ with more renewables connected to grids, and provide greater response and reliability, while supporting Energy Storage Systems (ESS). 

Solution

Kehua’s latest 4.167MW (SPI4167K-B-HUD) 1500V central inverter is intended to improve the system efficiency by more than 1% and reduce BOS costs by over 5%, according to the company.

The inverter is based on full modularisation from devices to power units and adopts multi-channel MPPT design, allowing for flexible redundancy for different project environments, power station conditions and system capability. DC parallel connection ensures the continuous operation of devices and is claimed to increase the overall utilisation rate by 1%.

The central inverter solution incorporates a grid-friendly PV generation system with energy storage devices and reduces the impact of solar curtailment and self-consumption, high DC/AC over ratio and power fluctuations. Through a patented power grid transient analysis, the system handles the data support for refined scheduling of power stations in the future. Its unique intelligent wave-recording function enables fast fault location and saves 80% of fault recovery time, according to the company. 

Applications

Utility-scale PV power plants designed for the new era of large-area high-performance PV modules that can exceed 660W. 

Platform

The SPI4167-B-HUD patented independent dual refrigeration circuits ensure higher security and reliability as they isolate power devices from magnetic devices, effectively reducing any rise in temperature of key devices and improving system reliability and operation life.

The maximum 16.668MW large square matrix is claimed to reduce BOS costs by about 0.76c/watt, decrease DC line loss of the whole system by 50%, and increase system efficiency by more than 1%. Taking a 100MW power station as an example, Kehua Tech says it can generate an extra 1.5 million kWh annually, based on an electricity fee of 0.046 US$/kWh, the cumulative economic benefits can be increased by US$1.9 million over 25 years.

Up to a 2.5 capacity ratio is supported. With the increase of capacity ratio, the power variation of the PV power station decreases synchronously, allowing it to provide smoother and more stable power delivery and greater grid-friendliness.

Availability

Fourth quarter of 2020, onwards. 

The 4.167MW central inverter solution realizes full modularization from devices to power units and adopts multi-channel MPPT design, which allows for flexible redundancy design based on different project environments, power station conditions and system capability. Image: Kehua Tech

Read Next

May 21, 2025
Carlyle has launched a new platform called Revera, dedicated to renewable energy, energy storage, and hydrogen projects in Australia and UK.
May 20, 2025
Enfinity Global has secured €100 million from Eiffel Investment Group to advance its solar PV and battery energy storage system (BESS) portfolio in Europe.
May 20, 2025
The three projects, Mammoth South, Mammoth Central I, and Mammoth Central II, have a generation capacity of 300 MW each.
May 20, 2025
Changes to tax credits under the Inflation Reduction Act (IRA) could “jeopardise” nearly 300 US solar and energy storage manufacturing facilities, according to trade body the Solar Energy Industries Association (SEIA).
May 20, 2025
Octopus Australia has received grid connection approval from AEMO for a 300MW solar-plus-storage site in New South Wales.
May 20, 2025
Australia’s Victoria government has proposed seven REZ for the state, emphasising these will help achieve its target of 2.7GW of utility-scale solar PV generation by 2040.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 8, 2025
Asia