Product Review: HIUV develops high reflective encapsulant improving the power of a PV module

June 17, 2016
Facebook
Twitter
LinkedIn
Reddit
Email
The pre-crosslinking technology in the S201W encapsulant is a similar technology used in the HIUV white encapsulant G401W for double glass modules. Image: HIUV

HIUV New Materials Co has successfully developed a high reflection rate encapsulant ‘S201W’ for conventional c-Si PV modules. By adding high quality TiO2 (Titanium Dioxide) and using pre-crosslinking technology, S201W is porcelain white with above 90% high light reflection rate.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Typically, the correlation between the average reflectance from a module encapsulant material and the short circuit current (Jsc) is almost lineal. As a result, encupsulants with higher reflectance are necessary to improve the power of a PV module.

Solution

The pre-crosslinking technology in the S201W encapsulant is a similar technology used in the HIUV white encapsulant G401W for double glass modules. By using the high reflection rate encapsulant for the bottom layer, higher conversion efficiencies are possible, compared with conventional encapsulant as more visible light can be harvested due to its high reflectivity properties. The company claims that by using S201W, a standard 60-cell module can achieve around 1.5-2.5 watts more power. 

Applications

Crystalline silicon module encapsulant.

Platform

Because of the pre-crosslinking technology, there is no white color overflow on the cell edge and ribbon in the lamination process. Lamination conditions are the same as making standard modules. In the laminator the white encapsulant faces the laminator’s rubber cover. Because of pre-crosslink of S201W, the lamination time can be slightly shortened in order to improve module production throughput, according to the company.

Availability

Currently available.

Read Next

February 6, 2026
Chinese solar PV manufacturer Aiko Solar will license a raft of solar cell technology patents from Singapore-based manufacturer Maxeon.
February 6, 2026
Lithuanian independent power producer (IPP) Green Genius has commenced operations of its 120.8MW solar project in Jekabpils region, Latvia.
February 6, 2026
The Australian government has launched a formal inquiry into the reuse and recycling of solar modules across the country.
February 5, 2026
Vietnam is the cheapest country to produce fully domestic solar modules outside of China, according to a report from the International Renewable Energy Agency (IRENA).
February 5, 2026
Explainer: Two new studies offer fresh insights into the performance of TOPCon solar modules, including a new degradation mode related to encapsulants.
February 4, 2026
In the wake of Russia’s invasion of Ukraine, European energy has gone from an overreliance on Russia to an overreliance on China.

Upcoming Events

Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA